Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Ecol Evol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38637209

RESUMEN

Dispersal evolution modifies diverse spatial processes, such as range expansions or biological invasions of single species, but we are currently lacking a realistic vision for metacommunities. Focusing on antagonistic species interactions, we review existing theory of dispersal evolution between natural enemies, and explain how this might be relevant for classic themes in host-parasite evolutionary ecology, namely virulence evolution or local adaptation. Specifically, we highlight the importance of considering the simultaneous (co)evolution of dispersal and interaction traits. Linking such multi-trait evolution with reciprocal demographic and epidemiological feedbacks might change basic predictions about coevolutionary processes and spatial dynamics of interacting species. Future challenges concern the integration of system-specific disease ecology or spatial modifiers, such as spatial network structure or environmental heterogeneity.

2.
Ecol Lett ; 26 Suppl 1: S91-S108, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37840024

RESUMEN

Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the 'theatre' in which ecology and evolution are two interacting 'players'. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.


Asunto(s)
Evolución Biológica , Ecosistema , Mutación
3.
Proc Natl Acad Sci U S A ; 119(31): e2121858119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35895682

RESUMEN

Contemporary evolution has the potential to significantly alter biotic responses to global change, including range expansion dynamics and biological invasions. Models predicting range dynamics often make highly simplifying assumptions about the genetic architecture underlying relevant traits. However, genetic architecture defines evolvability and higher-order evolutionary processes, which determine whether evolution will be able to keep up with environmental change or not. Therefore, we here study the impact of the genetic architecture of dispersal and local adaptation, two central traits of high relevance for range expansions, on the dynamics and predictability of invasion into an environmental gradient, such as temperature. In our theoretical model we assume that dispersal and local adaptation traits result from the products of two noninteracting gene-regulatory networks (GRNs). We compare our model to simpler quantitative genetics models and show that in the GRN model, range expansions are accelerating and less predictable. We further find that accelerating dynamics in the GRN model are primarily driven by an increase in the rate of local adaptation to novel habitats which results from greater sensitivity to mutation (decreased robustness) and increased gene expression. Our results highlight how processes at microscopic scales, here within genomes, can impact the predictions of large-scale, macroscopic phenomena, such as range expansions, by modulating the rate of evolution.


Asunto(s)
Adaptación Fisiológica , Redes Reguladoras de Genes , Modelos Genéticos , Adaptación Fisiológica/genética , Ecosistema , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...