Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1454601, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175543

RESUMEN

Background: Chronic pain significantly impacts quality of life and poses substantial public health challenges. Buprenorphine, a synthetic analog of thebaine, is recognized for its potential in managing moderate to severe chronic pain with fewer side effects and a lower incidence of tolerance compared to traditional opioids. Objective: This retrospective study aimed to assess the long-term efficacy and safety of buprenorphine transdermal patches in patients with moderate and severe chronic pain, with a focus on pain relief sustainability and tolerance development. Methods: This retrospective observational study involved 246 patients prescribed buprenorphine transdermal patches. We evaluated changes in pain intensity using the Numeric Rating Scale (NRS), assessed opioid tolerance based on FDA guidelines for morphine-equivalent doses, and measured patient-reported outcomes through the Patients' Global Impression of Change (PGIC). Any adverse events were also recorded. Results: Over the 36-month period, there was a significant reduction in NRS scores for both moderate and severe pain patients, demonstrating buprenorphine's sustained analgesic effect. Tolerance measurement indicated that no patients required increases in morphine-equivalent doses that would meet or exceed the FDA's threshold for opioid tolerance (60 mg/day of morphine or equivalent). Additionally, patient satisfaction was high, with the PGIC reflecting significant improvements in pain management and overall wellbeing. The side effects were minimal, with skin reactions and nausea being the most commonly reported but manageable adverse events. Conclusion: The study findings validate the long-term use of buprenorphine transdermal patches as an effective and safe option for chronic pain management, maintaining efficacy without significant tolerance development. These results support the continued and expanded use of buprenorphine in clinical settings, emphasizing its role in reducing the burdens of chronic pain and opioid-related side effects. Further research is encouraged to refine pain management protocols and explore buprenorphine's full potential in diverse patient populations.

2.
Methods Mol Biol ; 2835: 39-48, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105904

RESUMEN

Mitochondrial transfer (MT) is a biological process that allows a donor cell to horizontally share its own mitochondria with a recipient cell. Mitochondria are highly dynamic membrane-bound sub-cellular organelles prominently involved in the regulation of the cell energy balance, calcium homeostasis, and apoptotic machinery activation. They physiologically undergo fusion and fission processes in response to the cell requirement, with a continuous morphological re-arrangement. This structural and functional plasticity is at the basis of the MT, described in tissue regeneration, cardiac and neurological diseases, as well as in cancer. Here, the MT has been observed in the tumor micro-environment (TME) from the adipose-derived stem cells (ASCs) to the cancer cells, eventually reverting the lack of the mitochondria respiration function, or enhancing their motility and drug resistance. In this chapter, we outline some key protocols for evaluating this exciting phenomenon of MT. These methodological and technical approaches are very important, considering all the limitations that scientists constantly face, especially in this field of the research.


Asunto(s)
Células Madre Mesenquimatosas , Mitocondrias , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Mitocondrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Microambiente Tumoral , Línea Celular Tumoral , Dinámicas Mitocondriales
3.
EMBO Rep ; 25(8): 3651-3677, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39039299

RESUMEN

Endoplasmic reticulum (ER) remodeling is vital for cellular organization. ER-phagy, a selective autophagy targeting ER, plays an important role in maintaining ER morphology and function. The FAM134 protein family, including FAM134A, FAM134B, and FAM134C, mediates ER-phagy. While FAM134B mutations are linked to hereditary sensory and autonomic neuropathy in humans, the physiological role of the other FAM134 proteins remains unknown. To address this, we investigate the roles of FAM134 proteins using single and combined knockouts (KOs) in mice. Single KOs in young mice show no major phenotypes; however, combined Fam134b and Fam134c deletion (Fam134b/cdKO), but not the combination including Fam134a deletion, leads to rapid neuromuscular and somatosensory degeneration, resulting in premature death. Fam134b/cdKO mice show rapid loss of motor and sensory axons in the peripheral nervous system. Long axons from Fam134b/cdKO mice exhibit expanded tubular ER with a transverse ladder-like appearance, whereas no obvious abnormalities are present in cortical ER. Our study unveils the critical roles of FAM134C and FAM134B in the formation of tubular ER network in axons of both motor and sensory neurons.


Asunto(s)
Axones , Retículo Endoplásmico , Proteínas de la Membrana , Animales , Humanos , Ratones , Axones/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados
4.
J Exp Clin Cancer Res ; 43(1): 166, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877575

RESUMEN

BACKGROUND: Breast cancer (BC) is a complex disease, showing heterogeneity in the genetic background, molecular subtype, and treatment algorithm. Historically, treatment strategies have been directed towards cancer cells, but these are not the unique components of the tumor bulk, where a key role is played by the tumor microenvironment (TME), whose better understanding could be crucial to obtain better outcomes. METHODS: We evaluated mitochondrial transfer (MT) by co-culturing Adipose stem cells with different Breast cancer cells (BCCs), through MitoTracker assay, Mitoception, confocal and immunofluorescence analyses. MT inhibitors were used to confirm the MT by Tunneling Nano Tubes (TNTs). MT effect on multi-drug resistance (MDR) was assessed using Doxorubicin assay and ABC transporter evaluation. In addition, ATP production was measured by Oxygen Consumption rates (OCR) and Immunoblot analysis. RESULTS: We found that MT occurs via Tunneling Nano Tubes (TNTs) and can be blocked by actin polymerization inhibitors. Furthermore, in hybrid co-cultures between ASCs and patient-derived organoids we found a massive MT. Breast Cancer cells (BCCs) with ASCs derived mitochondria (ADM) showed a reduced HIF-1α expression in hypoxic conditions, with an increased ATP production driving ABC transporters-mediated multi-drug resistance (MDR), linked to oxidative phosphorylation metabolism rewiring. CONCLUSIONS: We provide a proof-of-concept of the occurrence of Mitochondrial Transfer (MT) from Adipose Stem Cells (ASCs) to BC models. Blocking MT from ASCs to BCCs could be a new effective therapeutic strategy for BC treatment.


Asunto(s)
Neoplasias de la Mama , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Mitocondrias , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Mitocondrias/metabolismo , Células Madre/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA