Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(1): 81-89, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38133934

RESUMEN

Exploring reactive and selective Ni-based electrocatalysts for the urea oxidation reaction (UOR) is crucial for developing urea-related energy conversion technologies. Herein, synergistic interactions in Ni/Co mixed oxides/hydroxides enhanced the UOR with low onset potential, fast reaction kinetics, and good selectivity against the oxygen evolution reaction (OER). Our electrochemical measurements and theoretical calculations signified the collaborative interaction of Ni/Co mixed oxide/hydroxide heterostructures to enhance UOR activity. Our results showed that Ni3+ species, formed at high anodic potential, produced a high anodic current primarily from unwanted OER. Instead, the Ni/Co heterostructures with dominant Ni2+ and Co3+ species remained stable at low anodic potential and exhibited anodic current exclusively attributed to UOR. This work highlights the importance of tuning valence charges for designing high-performance and selective UOR electrocatalysts to benefit the environmental remediation of urea runoff and enable urea electrolysis for hydrogen production by replacing conventional OER with UOR at the anode.

2.
J Am Chem Soc ; 144(27): 11938-11942, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35699519

RESUMEN

Iron hydroxides are desirable alkaline battery electrodes for low cost and environmental beneficence. However, hydrogen evolution on charging and Fe3O4 formation on discharging cause low storage capacity and poor cycling life. We report that green rust (GR) (Fe2+4Fe3+2 (HO-)12SO4), formed via sulfate insertion, promotes Fe(OH)2/FeOOH conversion and shows a discharge capacity of ∼211 mAh g-1 in half-cells and Coulombic efficiency of 93% after 300 cycles in full-cells. Theoretical calculations show that Fe(OH)2/FeOOH conversion is facilitated by intercalated sulfate anions. Classical molecular dynamics simulations reveal that electrolyte alkalinity strongly impacts the energetics of sulfate solvation, and low alkalinity ensures fast transport of sulfate ions. Anion-insertion-assisted Fe(OH)2/FeOOH conversion, also achieved with Cl- ion, paves a pathway toward efficient utilization of Fe-based electrodes for sustainable applications.


Asunto(s)
Suministros de Energía Eléctrica , Hierro , Hidróxidos , Oxidación-Reducción , Sulfatos
3.
Phys Chem Chem Phys ; 23(30): 16180-16192, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34297022

RESUMEN

Understanding liquid-metal interfaces in catalysis is important, as the liquid can speed up surface reactions, increase the selectivity of products, and open up new favorable reaction pathways. In this work we modeled using density functional theory various steps in ethanol oxidation/decomposition over Rh(111). We considered implicit (continuum), explicit, and hybrid (implicit combined with explicit) solvation approaches, as well as two solvents, water and ethanol. We focused on modeling adsorption steps, as well as C-C/C-H bond scission and C-O bond formation reactions. Implicit solvation had very little effect on adsorption and reaction free energies. However, using the explicit and hybrid models, some free energies changed significantly. Furthermore, ethanol solvent had a more considerable impact than water solvent. We observed that preferred reaction pathways for C-C scission changed depending on the solvation model and solvent choice (ethanol or water). We also applied the bond-additivity solvation method to calculate heats of adsorption. Heats of adsorption and reaction using the bond-additivity model followed the same trends as the other solvation models, but were ∼1.1 eV more endothermic. Our work highlights how different solvation approaches can influence analysis of the oxidation/decomposition of organic surface species.

4.
J Phys Chem Lett ; 11(21): 9289-9297, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33090788

RESUMEN

Anatase TiO2 is used extensively in a wide range of catalytic and photocatalytic processes and is a promising catalyst for hydrogen production. Here, we show that molecular hydrogen was produced from bridging hydroxyls (HOb) on the (101) surface of single-crystal anatase (TiO2(101)). This stands in contrast to rutile TiO2(110), where HOb pairs react to form H2O. Electron bombardment at 30 K produced bridging oxygen vacancies in the surface. Deuterated bridging hydroxyls (DOb) were subsequently formed via dissociation of adsorbed D2O and confirmed by infrared reflection-absorption spectroscopy. During temperature-programmed desorption (TPD) spectroscopy, D2 desorption was observed at 520 K. Density functional theory calculations show that both H2 and H2O production from HOb are endothermic at 0 K on TiO2(101), but H2 (H2O) desorption is entropically driven above 230 K (800 K). The calculated activation barrier for H2 desorption is 1.40 eV, which is similar to the desorption energy obtained from analysis of the D2 TPD spectra. The H2 desorption likely proceeds in two steps: H atom diffusion on the surface and then recombination.

5.
J Chem Theory Comput ; 16(8): 5264-5278, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32603136

RESUMEN

Polarons are localized electronic states that occur in many semiconductors. Modeling polarons at the quantum or atomic scale is often performed using electronic structure methods such as density functional theory (DFT). A problem using DFT to model polarons is that self-interaction errors (SIEs) often result in delocalized electronic states rather than localized states. Methods such as DFT + U or hybrid functionals can be used to overcome SIE, but these methods may still not form stable polarons. The initial geometries and wavefunctions strongly influence and determine how and if polarons may arise during electronic structure calculations. In this paper, we have assessed different strategies to efficiently obtain low-energy localized polarons in several semiconductors (TiO2, m-HfO2, and m-BiVO4). These strategies involve distorting the initial geometry to create polaron-like geometries or generating initial wavefunctions that mimic polaronic states. We show that perturbing the crystal's structure to induce polaron formation (which we call the bond distortion method) is a very efficient approach to form stable polarons, requiring less computational time than other methods. In contrast, other methods that we assessed may not lead to stable polaron states or may require much greater time (up to four times more computational time). Having a reliable, efficient method to ensure polaron formation is crucial to modeling polarons. The results described herein will save wasted computational efforts and also enable efforts such as high-throughput simulation of polarons.

6.
Phys Chem Chem Phys ; 21(42): 23626-23637, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31624817

RESUMEN

Stability is an important aspect of alloys, and proposed alloys may be unstable due to unfavorable atomic interactions. Segregation of an alloy may occur preferentially at specific exposed surfaces, which could affect the alloy's structure since certain surfaces may become enriched in certain elements. Using density functional theory (DFT), we modeled surface segregation in bimetallic alloys involving all transition metals doped in Pt, Pd, Ir, and Rh. We not only modeled common (111) surfaces of such alloys, but we also modeled (100), (110), and (210) facets of such alloys. Segregation is more preferred for early and late transition metals, with middle transition metals being most stable within the parent metal. We find these general trends in segregation energies for the parent metals: Pt > Rh > Pd > Ir. A comparison of different surfaces suggests no consistent trends across the different parent hosts, but segregation energies can vary up to 2 eV depending on the exposed surface. We also developed a statistical model to predict surface-dependent segregation energies. Our model is able to distinguish segregation at different surfaces (as opposed to generic segregation common in previous models), and agrees well with the DFT data. The present study provides valuable information about surface-dependent segregation and helps explain why certain alloy structures occur (e.g. core-shell).

7.
J Am Chem Soc ; 141(24): 9444-9447, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31150576

RESUMEN

Rh-catalyzed decomposition of ethanol into CO2 and CH4 via C-C bond splitting is reported in room-temperature liquid phase under atmospheric pressure. Mechanistic investigations show that C-C bond splitting of ethanol on the noble metal surface is rapid, and CO2 forms through the oxidation of α-CH xO and ß-CH x fragments after C-C bond splitting, while CH4 forms through the hydrogenation of ß-CH x utilizing H atoms from -OH, ß-CH x, and α-CH xOH fragments.

8.
Phys Chem Chem Phys ; 19(42): 28788-28807, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29051932

RESUMEN

Catalytic reduction of carbon dioxide to useful chemicals is a potent way to mitigate this greenhouse gas, but the challenge lies in finding active reduction catalysts. Using density functional theory we studied CO2 activation over TiO2-supported Cu clusters of size 1-4 atoms. The linear to bent transformation of CO2 is necessary for activation, and we found that all the clusters stabilized bent CO2, along with a significant gain of electrons on the CO2 (indicative of activation). On all the TiO2 supported Cu clusters, the interfacial sites were found to stabilize the bent CO2 adsorption, where the active site of adsorption on Cu dimer, trimer and tetramer was on the Cu atom farthest away from the TiO2 surface. Particularly, the Cu dimer stabilized bent CO2 very strongly, although this species was found to be unstable on the surface. A synthesis technique that could stabilize the Cu dimer could therefore lead to a very active catalyst. Furthermore we found (using vibrational and charge analysis) that the active sites for the CO2 activation predominantly had 0 and +1 oxidation states; the oxidation state of Cu is known to directly affect CO2 reduction activity. Our study shows TiO2-supported small Cu clusters can be active catalysts for CO2 reduction and also provides further motivation for theoretical and experimental studies of metal clusters.

9.
Phys Chem Chem Phys ; 19(28): 18671-18684, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28695939

RESUMEN

Crystalline titania has been extensively studied using experimental and theoretical tools. Amorphous titania, however, has received less attention in the literature, despite its importance for a number of applications, such as photocatalysis, batteries, and electronic devices. In this work we modeled amorphous titania using a combination of molecular dynamics and density functional theory with several stoichiometries (TiOx, 2 ≥ x ≥ 1.75). Our results show that oxygen atom removal from amorphous titania is much easier than from crystalline titania, indicating that reduced amorphous structures are likely common. Ti atoms in amorphous titania exhibit a distribution of coordination numbers (five to seven), but the average coordination number of oxygen increases upon reduction. We also identified that gap states arise in substoichiometric titania due to the formation of Ti3+ centers. Such gap states are highly localized and randomly distributed across different Ti atoms, although we do observe a slight preference for electron localization on seven-coordinated Ti atoms. We observe that band gaps increase with reduction of amorphous titania. We also analyzed a proposed hole hopping mechanism involving oxygen vacancies by calculating hole hopping distances. We found that such distances are large except in very reduced states, indicating likely slow hole diffusion through an oxygen vacancy mechanism. Our work is the first of its kind to thoroughly characterize the structural and electronic properties of amorphous titania in reduced states.

10.
Chemphyschem ; 18(16): 2171-2190, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28464413

RESUMEN

Liquid-metal interfaces occur in a number of surface processes, and it is fundamentally important to accurately model them. Herein, it is systematically determined how the presence of water affects several processes by using density functional theory with implicit solvation models. Adsorption of 41 common adsorbates and four catalytic reactions in both vacuum and water over the Pt(111) surface were modeled. The results show that adsorption energies for some species can change significantly in the presence of water (by up to 0.44 eV). It is further shown that solvation effects can be explained and predicted by analyzing simple chemical descriptors such as dipole moment and adsorbate charge. Models from artificial neural networks involving several potential descriptors, including gas-phase solvation energy, adsorbate charge, dipole moment, and surface area, are also reported. When water is present, reaction energies change by up to 0.23 eV, although it appears that water solvent negligibly affects several elementary reaction steps. The results show that hydrogen bonding can be important for a number of reactions, but is largely absent in the implicit solvation models. Furthermore, other solvents besides water were also modeled, and if a solvent has a small dielectric constant, then small solvation effects occur. This work provides guidelines on when solvation effects may be important for surface chemistry, and also provides valuable insights into modeling such effects.

11.
Phys Chem Chem Phys ; 17(44): 29734-46, 2015 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-26477857

RESUMEN

TiO2/graphene composites have shown promise as photocatalysts, leading to improved electronic properties. We have modeled using density functional theory TiO2/graphene interfaces formed between graphene with various defects/functional groups (C vacancy, epoxide, and hydroxyl) and TiO2 clusters of various sizes. We considered clusters from 3 to 45 atoms, the latter a nanoparticle of ∼1 nm in size. Our results show that binding to pristine graphene is dominated by van der Waals forces, and that C vacancies or epoxide groups lead to much stronger binding between the graphene and TiO2. Such sites may serve to anchor TiO2 to graphene. Graphene surfaces with hydroxyls however lead to OH transfer to TiO2 and weak interactions between the graphene and the hydroxylated TiO2 cluster. Charge transfer may occur between TiO2 and graphene in various directions (graphene to TiO2 or TiO2 to graphene), depending on the state of the graphene surface, based on overlap of the density of states. Our work indicates that graphene surface defects or functional groups may have a significant effect on the stability, structure, and photoactivity of these materials.

12.
J Chem Phys ; 142(2): 024708, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25591378

RESUMEN

Mixed phase rutile/anatase catalysts show increased reactivity compared with the pure phases alone. However, the mechanism causing this effect is not fully understood. The electronic properties of the interface and the relative energy of the electron in each phase play a key role in lowering the rate of recombination of electron hole pairs. Using density functional theory and the +U correction, we calculated the bands offsets between the phases taking into account the effect of the interface. Our model included several thousands atoms, and thus is a good representation of an interface between actual nanoparticles. We found rutile to have both higher conduction and valence band offsets than rutile, leading to an accumulation of electrons in the anatase phase accompanied by hole accumulation in the rutile phase. We also probed the electronic structure of our heterostructure and found a gap state caused by electrons localized in undercoordinated Ti atoms which were present within the interfacial region. Interfaces between bulk materials and between exposed surfaces both showed electron trapping at undercoordinated sites. These undercoordinated (typically four) atoms present localized electrons that could enable reduction reactions in the interfacial region, and could explain the increased reactivity of mixed-phase TiO2 photocatalyst materials.

13.
Chemphyschem ; 16(2): 313-21, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25359161

RESUMEN

By using a combination of scanning tunneling microscopy (STM), density functional theory (DFT), and secondary-ion mass spectroscopy (SIMS), we explored the interplay and relative impact of surface versus subsurface defects on the surface chemistry of rutile TiO2 . STM results show that surface O vacancies (VO ) are virtually absent in the vicinity of positively charged subsurface point defects. This observation is consistent with DFT calculations of the impact of subsurface defect proximity on VO formation energy. To monitor the influence of such lateral anticorrelation on surface redox chemistry, a test reaction of the dissociative adsorption of O2 was employed and was observed to be suppressed around them. DFT results attribute this to a perceived absence of intrinsic (Ti), and likely extrinsic interstitials in the nearest subsurface layer beneath inhibited areas. We also postulate that the entire nearest subsurface region could be devoid of any charged point defects, whereas prevalent surface defects (VO ) are largely responsible for mediation of the redox chemistry at the reduced TiO2 (110).

14.
J Am Chem Soc ; 136(31): 10862-5, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25033229

RESUMEN

Platinum-tin (Pt/Sn) binary nanoparticles are active electrocatalysts for the ethanol oxidation reaction (EOR), but inactive for splitting the C-C bond of ethanol to CO2. Here we studied detailed structure properties of Pt/Sn catalysts for the EOR, especially CO2 generation in situ using a CO2 microelectrode. We found that composition and crystalline structure of the tin element played important roles in the CO2 generation: non-alloyed Pt46-(SnO2)54 core-shell particles demonstrated a strong capability for C-C bond breaking of ethanol than pure Pt and intermetallic Pt/Sn, showing 4.1 times higher CO2 peak partial pressure generated from EOR than commercial Pt/C.


Asunto(s)
Etanol/química , Platino (Metal)/química , Compuestos de Estaño/química , Aleaciones/química , Catálisis , Electroquímica , Oxidación-Reducción
15.
ChemSusChem ; 6(10): 1983-92, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23650213

RESUMEN

Hausmannite Mn3 O4 octahedral nanoparticles of 18.3 ± 7.0 nm with (101) facets have been prepared by an oxygen-mediated growth. The electrochemical properties of the Mn3 O4 particles as pseudocapacitive cathode materials were characterized both in half-cells and in button-cells. The Mn3 O4 nanoparticles exhibited a high mass-specific capacitance of 261 F g(-1), which was calculated from cyclic voltammetry analyses, and a capacitive retention of 78% after 10,000 galvanostatic charge-discharge cycles. The charge-transfer mechanisms of the Mn3 O4 nanoparticles were further studied by using synchrotron-based in situ X-ray absorption near edge spectroscopy and XRD. Both measurements showed concurrently that throughout the potential window of 0-1.2 V (vs. Ag/AgCl), a stable spinel structure of Mn3 O4 remained, and a reversible electrochemical conversion between tetrahedral [Mn(II) O4 ] and octahedral [Mn(III) O6 ] units accounted for the redox activity. Density functional theory calculations further corroborated this mechanism by confirming the enhanced redox stability afforded by the abundant and exposed (101) facets of Mn3 O4 octahedra.


Asunto(s)
Compuestos de Manganeso/química , Nanopartículas/química , Óxidos/química , Electroquímica , Transporte de Electrón , Modelos Moleculares , Conformación Molecular
16.
ACS Appl Mater Interfaces ; 4(10): 5360-8, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-22947770

RESUMEN

Immobilization of biomolecular probes to the sensing substrate is a critical step for biosensor fabrication. In this work we investigated the phosphate-dependent, oriented immobilization of DNA to hafnium dioxide surfaces for biosensing applications. Phosphate-dependent immobilization was confirmed on a wide range of hafnium oxide surfaces; however, a second interaction mode was observed on monoclinic hafnium dioxide. On the basis of previous materials studies on these films, DNA immobilization studies, and density functional theory (DFT) modeling, we propose that this secondary interaction is between the exposed nucleobases of single stranded DNA and the surface. The lattice spacing of monoclinic hafnium dioxide matches the base-to-base pitch of DNA. Monoclinic hafnium dioxide is advantageous for nanoelectronic applications, yet because of this secondary DNA immobilization mechanism, it could impede DNA hybridization or cause nonspecific surface intereactions. Nonetheless, DNA immobilization on polycrystalline and amorphous hafnium dioxide is predominately mediated by the terminal phosphate in an oriented manner which is desirable for biosensing applications.


Asunto(s)
Técnicas Biosensibles , ADN/análisis , Hafnio/química , Óxidos/química , Ácidos Nucleicos Inmovilizados/química , Nanopartículas del Metal/química , Hibridación de Ácido Nucleico , Propiedades de Superficie
17.
Phys Rev Lett ; 109(26): 266103, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23368587

RESUMEN

Scanning tunneling microscopy results reveal a pronounced site selectivity in the hole-mediated photooxidation of trimethyl acetate (TMA) on TiO2(110), wherein the reaction readily occurs at regular Ti sites but is completely inhibited at oxygen vacancy (VV(O)) defects. Utilizing electron energy loss spectroscopy and density functional theory, we show that the lack of reactivity of TMA groups adsorbed at V(O)'s cannot be attributed to either a less active adsorption conformation or electron transfer from the V(O) defect. Instead, we propose that the excess unpaired electrons associated with the V(O) promptly recombine with photoexcited holes approaching the surface, effectively "screening" TMA species at the V(O) site. We also show that this screening effect is predominately localized at the V(O), only mildly affecting TMA's at adjacent Ti sites.

18.
J Am Chem Soc ; 133(38): 15172-83, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21812458

RESUMEN

Ethanol is a promising fuel for low-temperature direct fuel cell reactions due to its low toxicity, ease of storage and transportation, high-energy density, and availability from biomass. However, the implementation of ethanol fuel cell technology has been hindered by the lack of low-cost, highly active anode catalysts. In this paper, we have studied Iridium (Ir)-based binary catalysts as low-cost alternative electrocatalysts replacing platinum (Pt)-based catalysts for the direct ethanol fuel cell (DEFC) reaction. We report the synthesis of carbon supported Ir(71)Sn(29) catalysts with an average diameter of 2.7 ± 0.6 nm through a "surfactant-free" wet chemistry approach. The complementary characterization techniques, including aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, are used to identify the "real" heterogeneous structure of Ir(71)Sn(29)/C particles as Ir/Ir-Sn/SnO(2), which consists of an Ir-rich core and an Ir-Sn alloy shell with SnO(2) present on the surface. The Ir(71)Sn(29)/C heterogeneous catalyst exhibited high electrochemical activity toward the ethanol oxidation reaction compared to the commercial Pt/C (ETEK), PtRu/C (Johnson Matthey) as well as PtSn/C catalysts. Electrochemical measurements and density functional theory calculations demonstrate that the superior electro-activity is directly related to the high degree of Ir-Sn alloy formation as well as the existence of nonalloyed SnO(2) on surface. Our cross-disciplinary work, from novel "surfactant-free" synthesis of Ir-Sn catalysts, theoretical simulations, and catalytic measurements to the characterizations of "real" heterogeneous nanostructures, will not only highlight the intriguing structure-property correlations in nanosized catalysts but also have a transformative impact on the commercialization of DEFC technology by replacing Pt with low-cost, highly active Ir-based catalysts.


Asunto(s)
Etanol/química , Iridio/química , Nanopartículas/química , Compuestos de Estaño/química , Estaño/química , Catálisis , Electroquímica , Oxidación-Reducción , Tamaño de la Partícula , Teoría Cuántica , Propiedades de Superficie
19.
Phys Chem Chem Phys ; 12(23): 5986-92, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20490397

RESUMEN

Combined scanning tunneling microscopy (STM), X-rays photoelectron spectroscopy (XPS) and density functional theory (DFT) studies have probed the bonding configurations and mobility of trimethylacetic acid (TMAA) molecules on the TiO(2)(110) surface at RT. Upon TMAA dissociation through deprotonation, two distinctly different types of stable chemisorption configurations of the carboxylate group (TMA) have been identified according to their position and appearance in STM images. In configuration A, two carboxylate O atoms bond to two Ti(4+) cations, while in configuration B one O atom fills the bridging oxygen vacancy (V(O)) with the other O bounded at an adjacent regular Ti(4+) site. Calculated adsorption energies for the configurations A and B are comparable at 1.28 and 1.36 eV, respectively. DFT results also show that TMA may rotate at RT about its O atom that filled the V(O) (in configuration B), with a rotation barrier of approximately 0.65 eV. Both the observation of the constant initial sticking coefficient and preference for TMAA molecules to dissociate at selective sites indicate that TMAA adsorption is mediated by a mobile precursor state. Several possible molecular (physisorbed) states of TMAA have indeed been identified by DFT, all being highly mobile at RT. In contrast, the TMA diffusion in the chemisorbed (dissociative) state is a very slow with a calculated barrier of 1.09 eV for diffusion along the Ti row.

20.
J Chem Phys ; 122(18): 184709, 2005 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-15918749

RESUMEN

The adsorption of atomic oxygen on unreconstructed Pt[100]-(1 x 1) and reconstructed Pt[100]-(5 x 1) was modeled using density-functional theory in an attempt to understand the relative stability of the unreconstructed phase as a function of oxygen coverage. Our calculations showed that at zero temperature the (5 x 1) is more stable than the unreconstructed (1 x 1) phase at zero oxygen coverage. However, oxygen absorption on the Pt[100]-(5 x 1) phase removed the reconstruction, reversing the phase stability. Using thermochemical analysis, we show desorption of oxygen corresponding to a temperature near 730 K, consistent with experimentally observed desorption peaks for oxygen covered (1 x 1) surfaces. These results have ramifications for understanding the full Pt[100](1 x 1)-->Pt[100]hex-R0.7 degrees surface phase transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...