Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 11(3)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799653

RESUMEN

Multiple sclerosis (MS) is a complex central nervous system inflammatory disease leading to demyelination and associated functional deficits. Though endogenous remyelination exists, it is only partial and, with time, patients can enter a progressive phase of the disease, with neurodegeneration as a hallmark. Though major therapeutic advances have been made, with immunotherapies reducing relapse rate during the inflammatory phase of MS, there is presently no therapy available which significantly impacts disease progression. Remyelination has been shown to favor neuroprotection, and it is thus of major importance to better understand remyelination mechanisms in order to promote them and hence preserve neurons. A crucial point is how this process is regulated through the neuronal crosstalk with the oligodendroglial lineage. In this review, we present the current knowledge on neuron interaction with the oligodendroglial lineage, in physiological context as well as in MS and its experimental models. We further discuss the therapeutic possibilities resulting from this research field, which might allow to support remyelination and neuroprotection and thus limit MS progression.

2.
Nat Rev Neurol ; 16(8): 426-439, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32651566

RESUMEN

Saltatory conduction of action potentials along myelinated axons depends on the nodes of Ranvier - small unmyelinated axonal domains where voltage-gated sodium channels are concentrated. Our knowledge of the complex molecular composition of these axonal domains continues to accumulate, although the mechanisms of nodal assembly, which have been elucidated in the PNS, remain only partially understood in the CNS. Besides the key role of the nodes in accelerating conduction, nodal variations are thought to allow the fine tuning of axonal conduction speed to meet information processing needs. In addition, through their multiple glial contacts, nodes seem to be important for neuron-glia interactions. As we highlight in this Review, the disorganization of axonal domains has been implicated in the pathophysiology of various neurological diseases. In multiple sclerosis, for example, nodal and perinodal disruption following demyelination, with subsequent changes in ion channel distribution, leads to altered axonal conduction and integrity. The nodal clusters regenerate concurrently with but also prior to remyelination, allowing the restoration of axonal conduction. In this article, we review current knowledge of the organization and function of nodes of Ranvier in the CNS. We go on to discuss dynamic changes in the nodes during demyelination and remyelination, highlighting the impact of these changes on neuronal physiology in health and disease as well as the associated therapeutic implications.


Asunto(s)
Enfermedades del Sistema Nervioso Central/fisiopatología , Sistema Nervioso Central/crecimiento & desarrollo , Conducción Nerviosa/fisiología , Neuroprotección/fisiología , Nódulos de Ranvier/fisiología , Animales , Axones/patología , Axones/fisiología , Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/patología , Humanos , Neuroglía/patología , Neuroglía/fisiología , Neuronas/patología , Neuronas/fisiología , Nódulos de Ranvier/patología
3.
Front Cell Neurosci ; 14: 42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180708

RESUMEN

The plasticity of the central nervous system (CNS) in response to neuronal activity has been suggested as early as 1894 by Cajal (1894). CNS plasticity has first been studied with a focus on neuronal structures. However, in the last decade, myelin plasticity has been unraveled as an adaptive mechanism of importance, in addition to the previously described processes of myelin repair. Indeed, it is now clear that myelin remodeling occurs along with life and adapts to the activity of neuronal networks. Until now, it has been considered as a two-part dialog between the neuron and the oligodendroglial lineage. However, other glial cell types might be at play in myelin plasticity. In the present review, we first summarize the key structural parameters for myelination, we then describe how neuronal activity modulates myelination and finally discuss how other glial cells could participate in myelinic adaptivity.

4.
Glia ; 68(9): 1891-1909, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32119167

RESUMEN

In vertebrates, fast saltatory conduction along myelinated axons relies on the node of Ranvier. How nodes assemble on CNS neurons is not yet fully understood. We previously described that node-like clusters can form prior to myelin deposition in hippocampal GABAergic neurons and are associated with increased conduction velocity. Here, we used a live imaging approach to characterize the intrinsic mechanisms underlying the assembly of these clusters prior to myelination. We first demonstrated that their components can partially preassemble prior to membrane targeting and determined the molecular motors involved in their trafficking. We then demonstrated the key role of the protein ß2Nav for node-like clustering initiation. We further assessed the fate of these clusters when myelination proceeds. Our results shed light on the intrinsic mechanisms involved in node-like clustering prior to myelination and unravel a potential role of these clusters in node of Ranvier formation and in guiding myelination onset.


Asunto(s)
Axones , Neuronas GABAérgicas , Animales , Sistema Nervioso Central , Análisis por Conglomerados , Vaina de Mielina , Nódulos de Ranvier
5.
Glia ; 67(12): 2248-2263, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31328333

RESUMEN

The fast and reliable propagation of action potentials along myelinated fibers relies on the clustering of voltage-gated sodium channels at nodes of Ranvier. Axo-glial communication is required for assembly of nodal proteins in the central nervous system, yet the underlying mechanisms remain poorly understood. Oligodendrocytes are known to support node of Ranvier assembly through paranodal junction formation. In addition, the formation of early nodal protein clusters (or prenodes) along axons prior to myelination has been reported, and can be induced by oligodendrocyte conditioned medium (OCM). Our recent work on cultured hippocampal neurons showed that OCM-induced prenodes are associated with an increased conduction velocity (Freeman et al., 2015). We here unravel the nature of the oligodendroglial secreted factors. Mass spectrometry analysis of OCM identified several candidate proteins (i.e., Contactin-1, ChL1, NrCAM, Noelin2, RPTP/Phosphacan, and Tenascin-R). We show that Contactin-1 combined with RPTP/Phosphacan or Tenascin-R induces clusters of nodal proteins along hippocampal GABAergic axons. Furthermore, Contactin-1-immunodepleted OCM or OCM from Cntn1-null mice display significantly reduced clustering activity, that is restored by addition of soluble Contactin-1. Altogether, our results identify Contactin-1 secreted by oligodendrocytes as a novel factor that may influence early steps of nodal sodium channel cluster formation along specific axon populations.


Asunto(s)
Contactina 1/metabolismo , Hipocampo/metabolismo , Proteína Nodal/metabolismo , Oligodendroglía/metabolismo , Animales , Células Cultivadas , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Contactina 1/genética , Neuronas GABAérgicas/metabolismo , Hipocampo/citología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteína Nodal/genética , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Wistar
6.
J Vis Exp ; (145)2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30958468

RESUMEN

In the nervous system, myelin is a complex membrane structure generated by myelinating glial cells, which ensheathes axons and facilitates fast electrical conduction. Myelin alteration has been shown to occur in various neurological diseases, where it is associated with functional deficits. Here, we provide a detailed description of an ex vivo model consisting of mouse organotypic cerebellar slices, which can be maintained in culture for several weeks and further be labeled to visualize myelin.


Asunto(s)
Cerebelo/citología , Vaina de Mielina/metabolismo , Técnicas de Cultivo de Órganos/métodos , Coloración y Etiquetado , Animales , Células Cultivadas , Ratones Endogámicos C57BL
7.
PLoS Genet ; 14(8): e1007550, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30067756

RESUMEN

Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous human neurodegenerative diseases. Amongst the identified genetic causes, mutations in genes encoding motor proteins such as kinesins have been involved in various HSP clinical isoforms. Mutations in KIF1C are responsible for autosomal recessive spastic paraplegia type 58 (SPG58) and spastic ataxia 2 (SPAX2). Bovines also develop neurodegenerative diseases, some of them having a genetic aetiology. Bovine progressive ataxia was first described in the Charolais breed in the early 1970s in England and further cases in this breed were subsequently reported worldwide. We can now report that progressive ataxia of Charolais cattle results from a homozygous single nucleotide polymorphism in the coding region of the KIF1C gene. In this study, we show that the mutation at the heterozygous state is associated with a better score for muscular development, explaining its balancing selection for several decades, and the resulting high frequency (13%) of the allele in the French Charolais breed. We demonstrate that the KIF1C bovine mutation leads to a functional knock-out, therefore mimicking mutations in humans affected by SPG58/SPAX2. The functional consequences of KIF1C loss of function in cattle were also histologically reevaluated. We showed by an immunochemistry approach that demyelinating plaques were due to altered oligodendrocyte membrane protrusion, and we highlight an abnormal accumulation of actin in the core of demyelinating plaques, which is normally concentrated at the leading edge of oligodendrocytes during axon wrapping. We also observed that the lesions were associated with abnormal extension of paranodal sections. Moreover, this model highlights the role of KIF1C protein in preserving the structural integrity and function of myelin, since the clinical signs and lesions arise in young-adult Charolais cattle. Finally, this model provides useful information for SPG58/SPAX2 disease and other demyelinating lesions.


Asunto(s)
Enfermedades de los Bovinos/genética , Bovinos/genética , Cinesinas/metabolismo , Vaina de Mielina/metabolismo , Degeneraciones Espinocerebelosas/veterinaria , Secuencia de Aminoácidos , Animales , Enfermedades de los Bovinos/diagnóstico , Modelos Animales de Enfermedad , Femenino , Heterocigoto , Homocigoto , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/veterinaria , Cinesinas/genética , Masculino , Espasticidad Muscular/diagnóstico , Espasticidad Muscular/genética , Espasticidad Muscular/veterinaria , Mutación Missense , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Atrofia Óptica/veterinaria , Polimorfismo de Nucleótido Simple , Paraplejía Espástica Hereditaria/diagnóstico , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/veterinaria , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/veterinaria , Degeneraciones Espinocerebelosas/diagnóstico , Degeneraciones Espinocerebelosas/genética , Secuenciación Completa del Genoma
8.
Cell Mol Life Sci ; 73(4): 723-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26514731

RESUMEN

The efficient propagation of action potentials along nervous fibers is necessary for animals to interact with the environment with timeliness and precision. Myelination of axons is an essential step to ensure fast action potential propagation by saltatory conduction, a process that requires highly concentrated voltage-gated sodium channels at the nodes of Ranvier. Recent studies suggest that the clustering of sodium channels can influence axonal impulse conduction in both myelinated and unmyelinated fibers, which could have major implications in disease, particularly demyelinating pathology. This comprehensive review summarizes the mechanisms governing the clustering of sodium channels at the peripheral and central nervous system nodes and the specific roles of their clustering in influencing action potential conduction. We further highlight the classical biophysical parameters implicated in conduction timing, followed by a detailed discussion on how sodium channel clustering along unmyelinated axons can impact axonal impulse conduction in both physiological and pathological contexts.


Asunto(s)
Potenciales de Acción , Axones/metabolismo , Nódulos de Ranvier/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Axones/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Humanos , Nódulos de Ranvier/patología
9.
J Neurosci ; 35(5): 2246-54, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25653379

RESUMEN

Rapid nerve conduction in myelinated nerves requires the clustering of voltage-gated sodium channels at nodes of Ranvier. The Neurofascin (Nfasc) gene has a unique role in node formation because it encodes glial and neuronal isoforms of neurofascin (Nfasc155 and Nfasc186, respectively) with key functions in assembling the nodal macromolecular complex. A third neurofascin, Nfasc140, has also been described; however, neither the cellular origin nor function of this isoform was known. Here we show that Nfasc140 is a neuronal protein strongly expressed during mouse embryonic development. Expression of Nfasc140 persists but declines during the initial stages of node formation, in contrast to Nfasc155 and Nfasc186, which increase. Nevertheless, Nfasc140, like Nfasc186, can cluster voltage-gated sodium channels (Nav) at the developing node of Ranvier and can restore electrophysiological function independently of Nfasc155 and Nfasc186. This suggests that Nfasc140 complements the function of Nfasc155 and Nfasc186 in initial stages of the assembly and stabilization of the nodal complex. Further, Nfasc140 is reexpressed in demyelinated white matter lesions of postmortem brain tissue from human subjects with multiple sclerosis. This expands the critical role of the Nfasc gene in the function of myelinated axons and reveals further redundancy in the mechanisms required for the formation of this crucial structure in the vertebrate nervous system.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Nódulos de Ranvier/metabolismo , Rombencéfalo/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Axones/metabolismo , Estudios de Casos y Controles , Moléculas de Adhesión Celular/genética , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Esclerosis Múltiple/metabolismo , Factores de Crecimiento Nervioso/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Rombencéfalo/embriología , Canales de Sodio Activados por Voltaje/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(3): E321-8, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25561543

RESUMEN

High-density accumulation of voltage-gated sodium (Nav) channels at nodes of Ranvier ensures rapid saltatory conduction along myelinated axons. To gain insight into mechanisms of node assembly in the CNS, we focused on early steps of nodal protein clustering. We show in hippocampal cultures that prenodes (i.e., clusters of Nav channels colocalizing with the scaffold protein ankyrinG and nodal cell adhesion molecules) are detected before myelin deposition along axons. These clusters can be induced on purified neurons by addition of oligodendroglial-secreted factor(s), whereas ankyrinG silencing prevents their formation. The Nav isoforms Nav1.1, Nav1.2, and Nav1.6 are detected at prenodes, with Nav1.6 progressively replacing Nav1.2 over time in hippocampal neurons cultured with oligodendrocytes and astrocytes. However, the oligodendrocyte-secreted factor(s) can induce the clustering of Nav1.1 and Nav1.2 but not of Nav1.6 on purified neurons. We observed that prenodes are restricted to GABAergic neurons, whereas clustering of nodal proteins only occurs concomitantly with myelin ensheathment on pyramidal neurons, implying separate mechanisms of assembly among different neuronal subpopulations. To address the functional significance of these early clusters, we used single-axon electrophysiological recordings in vitro and showed that prenode formation is sufficient to accelerate the speed of axonal conduction before myelination. Finally, we provide evidence that prenodal clusters are also detected in vivo before myelination, further strengthening their physiological relevance.


Asunto(s)
Vaina de Mielina/metabolismo , Animales , Hipocampo/metabolismo , Ratones , Ratas
11.
J Neurosci ; 34(38): 12904-18, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25232125

RESUMEN

Postnatal synapse elimination plays a critical role in sculpting and refining neural connectivity throughout the central and peripheral nervous systems, including the removal of supernumerary axonal inputs from neuromuscular junctions (NMJs). Here, we reveal a novel and important role for myelinating glia in regulating synapse elimination at the mouse NMJ, where loss of a single glial cell protein, the glial isoform of neurofascin (Nfasc155), was sufficient to disrupt postnatal remodeling of synaptic circuitry. Neuromuscular synapses were formed normally in mice lacking Nfasc155, including the establishment of robust neuromuscular synaptic transmission. However, loss of Nfasc155 was sufficient to cause a robust delay in postnatal synapse elimination at the NMJ across all muscle groups examined. Nfasc155 regulated neuronal remodeling independently of its canonical role in forming paranodal axo-glial junctions, as synapse elimination occurred normally in mice lacking the axonal paranodal protein Caspr. Rather, high-resolution proteomic screens revealed that loss of Nfasc155 from glial cells was sufficient to disrupt neuronal cytoskeletal organization and trafficking pathways, resulting in reduced levels of neurofilament light (NF-L) protein in distal axons and motor nerve terminals. Mice lacking NF-L recapitulated the delayed synapse elimination phenotype observed in mice lacking Nfasc155, suggesting that glial cells regulate synapse elimination, at least in part, through modulation of the axonal cytoskeleton. Together, our study reveals a glial cell-dependent pathway regulating the sculpting of neuronal connectivity and synaptic circuitry in the peripheral nervous system.


Asunto(s)
Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/fisiología , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/fisiología , Unión Neuromuscular/fisiología , Sinapsis/fisiología , Animales , Axones/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/fisiología , Citoesqueleto/metabolismo , Ratones , Ratones Noqueados , Placa Motora/crecimiento & desarrollo , Neuronas Motoras/metabolismo , Factores de Crecimiento Nervioso/genética , Conducción Nerviosa/genética , Conducción Nerviosa/fisiología , Proteínas de Neurofilamentos/metabolismo , Neuroglía/metabolismo , Unión Neuromuscular/crecimiento & desarrollo , Isoformas de Proteínas/genética , Proteómica , Células de Schwann/metabolismo , Sinapsis/genética , Transmisión Sináptica/fisiología
12.
J Neurosci ; 34(15): 5083-8, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24719087

RESUMEN

Fast, saltatory conduction in myelinated nerves requires the clustering of voltage-gated sodium channels (Nav) at nodes of Ranvier in a nodal complex. The Neurofascin (Nfasc) gene encodes neuronal Neurofascin 186 (Nfasc186) at the node and glial Neurofascin 155 at the paranode, and these proteins play a key role in node assembly. However, their role in the maintenance and stability of the node is less well understood. Here we show that by inducible ablation of Nfasc in neurons in adult mice, Nfasc186 expression is reduced by >99% and 94% at PNS and CNS nodes, respectively. Gliomedin and NrCAM at PNS and brevican at CNS nodes are largely lost with neuronal neurofascin; however, Nav at nodes of Ranvier persist, albeit with ∼40% reduction in expression levels. ßIV Spectrin, ankyrin G, and, to a lesser extent, the ß1 subunit of the sodium channel, are less affected at the PNS node than in the CNS. Nevertheless, there is a 38% reduction in PNS conduction velocity. Loss of Nfasc186 provokes CNS paranodal disorganization, but this does not contribute to loss of Nav. These results show that Nav at PNS nodes are still maintained in a nodal complex when neuronal neurofascin is depleted, whereas the retention of nodal Nav in the CNS, despite more extensive dissolution of the complex, suggests a supportive role for the partially disrupted paranodal axoglial junction in selectively maintaining Nav at the CNS node.


Asunto(s)
Moléculas de Adhesión Celular/genética , Eliminación de Gen , Factores de Crecimiento Nervioso/genética , Nódulos de Ranvier/metabolismo , Médula Espinal/metabolismo , Animales , Brevicano/metabolismo , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Femenino , Masculino , Ratones , Factores de Crecimiento Nervioso/metabolismo , Neuroglía/metabolismo , Transporte de Proteínas , Médula Espinal/citología , Canales de Sodio Activados por Voltaje/metabolismo
13.
J Neurosci ; 32(37): 12885-95, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22973012

RESUMEN

Live imaging studies of the processes of demyelination and remyelination have so far been technically limited in mammals. We have thus generated a Xenopus laevis transgenic line allowing live imaging and conditional ablation of myelinating oligodendrocytes throughout the CNS. In these transgenic pMBP-eGFP-NTR tadpoles the myelin basic protein (MBP) regulatory sequences, specific to mature oligodendrocytes, are used to drive expression of an eGFP (enhanced green fluorescent protein) reporter fused to the Escherichia coli nitroreductase (NTR) selection enzyme. This enzyme converts the innocuous prodrug metronidazole (MTZ) to a cytotoxin. Using two-photon imaging in vivo, we show that pMBP-eGFP-NTR tadpoles display a graded oligodendrocyte ablation in response to MTZ, which depends on the exposure time to MTZ. MTZ-induced cell death was restricted to oligodendrocytes, without detectable axonal damage. After cessation of MTZ treatment, remyelination proceeded spontaneously, but was strongly accelerated by retinoic acid. Altogether, these features establish the Xenopus pMBP-eGFP-NTR line as a novel in vivo model for the study of demyelination/remyelination processes and for large-scale screens of therapeutic agents promoting myelin repair.


Asunto(s)
Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Regeneración Nerviosa/fisiología , Xenopus laevis/anatomía & histología , Xenopus laevis/fisiología , Animales , Humanos
14.
Mult Scler ; 18(2): 133-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22217583

RESUMEN

How axonal damage, a major prognostic factor of multiple sclerosis disability progression, is induced, is likely to be multifactorial. Whereas axonal injury has been identified as a consequence of myelin loss, the possibility of an additional direct damage is also suggested. In this context, recent data have highlighted the nodal and perinodal axonal domains of the myelinated neurons as potential targets of the disease process, opening new perspectives in multiple sclerosis pathophysiology.


Asunto(s)
Axones/patología , Esclerosis Múltiple/patología , Degeneración Nerviosa/patología , Nódulos de Ranvier/patología , Animales , Autoinmunidad/inmunología , Axones/inmunología , Humanos , Esclerosis Múltiple/inmunología , Degeneración Nerviosa/inmunología , Nódulos de Ranvier/inmunología
15.
J Neurosci ; 31(49): 18185-94, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22159130

RESUMEN

Myelinated axons have a distinct protein architecture essential for action potential propagation, neuronal communication, and maintaining cognitive function. Damage to myelinated axons, associated with cerebral hypoperfusion, contributes to age-related cognitive decline. We sought to determine early alterations in the protein architecture of myelinated axons and potential mechanisms after hypoperfusion. Using a mouse model of hypoperfusion, we assessed changes in proteins critical to the maintenance of paranodes, nodes of Ranvier, axon-glial integrity, axons, and myelin by confocal laser scanning microscopy. As early as 3 d after hypoperfusion, the paranodal septate-like junctions were damaged. This was marked by a progressive reduction of paranodal Neurofascin signal and a loss of septate-like junctions. Concurrent with paranodal disruption, there was a significant increase in nodal length, identified by Nav1.6 staining, with hypoperfusion. Disruption of axon-glial integrity was also determined after hypoperfusion by changes in the spatial distribution of myelin-associated glycoprotein staining. These nodal/paranodal changes were more pronounced after 1 month of hypoperfusion. In contrast, the nodal anchoring proteins AnkyrinG and Neurofascin 186 were unchanged and there were no overt changes in axonal and myelin integrity with hypoperfusion. A microarray analysis of white matter samples indicated that there were significant alterations in 129 genes. Subsequent analysis indicated alterations in biological pathways, including inflammatory responses, cytokine-cytokine receptor interactions, blood vessel development, and cell proliferation processes. Our results demonstrate that hypoperfusion leads to a rapid disruption of key proteins critical to the stability of the axon-glial connection that is mediated by a diversity of molecular events.


Asunto(s)
Axones/patología , Regulación de la Expresión Génica/fisiología , Hipoxia-Isquemia Encefálica/patología , Neuroglía/patología , Neuronas/patología , Factores de Edad , Animales , Ancirinas/metabolismo , Moléculas de Adhesión Celular , Moléculas de Adhesión Celular Neuronal , Enfermedad Crónica , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Modelos Animales de Enfermedad , Tomografía con Microscopio Electrónico/métodos , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Proteína Básica de Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6 , Fibras Nerviosas Mielínicas/metabolismo , Factores de Crecimiento Nervioso , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neuroglía/metabolismo , Neuronas/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Nervio Óptico/metabolismo , Nervio Óptico/patología , Nervio Óptico/ultraestructura , Nódulos de Ranvier/metabolismo , Nódulos de Ranvier/patología , Transducción de Señal/fisiología , Canales de Sodio
16.
Neuron ; 69(5): 945-56, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21382554

RESUMEN

The axon initial segment (AIS) is critical for the initiation and propagation of action potentials. Assembly of the AIS requires interactions between scaffolding molecules and voltage-gated sodium channels, but the molecular mechanisms that stabilize the AIS are poorly understood. The neuronal isoform of Neurofascin, Nfasc186, clusters voltage-gated sodium channels at nodes of Ranvier in myelinated nerves: here, we investigate its role in AIS assembly and stabilization. Inactivation of the Nfasc gene in cerebellar Purkinje cells of adult mice causes rapid loss of Nfasc186 from the AIS but not from nodes of Ranvier. This causes AIS disintegration, impairment of motor learning and the abolition of the spontaneous tonic discharge typical of Purkinje cells. Nevertheless, action potentials with a modified waveform can still be evoked and basic motor abilities remain intact. We propose that Nfasc186 optimizes communication between mature neurons by anchoring the key elements of the adult AIS complex.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Moléculas de Adhesión Celular/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neuronas/fisiología , Nódulos de Ranvier/fisiología , Animales , Moléculas de Adhesión Celular/genética , Electrofisiología , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/genética , Canales de Sodio/fisiología
17.
J Biol Chem ; 284(16): 10831-40, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19218566

RESUMEN

The zinc finger transcription factor Krox20 plays an essential role in the vertebrate hindbrain segmentation process. It positively or negatively controls a large variety of other regulatory genes, coordinating delimitation of segmental territories, specification of their identity, and maintenance of their integrity. We have investigated the molecular mechanisms of Krox20 transcriptional control by performing a detailed structure-function analysis of the protein in the developing chick hindbrain. This revealed an unsuspected diversity in the modes of action of a transcription factor in a single tissue, since regulation of each of the five tested target genes requires different parts of the protein and/or presumably different co-factors. The multiplicity of Krox20 functions might rely on this diversity. Investigation of known Krox20 co-factors was initiated in relation to this analysis. Nab was shown to act as a negative feedback modulator of the different Krox20 activating functions in the hindbrain. HCF-1 was found to bind to a Krox20 N-terminal region, which was shown to rely on multiple elements, including acidic domains, to convey Nab activation and Krox20 autoregulation.


Asunto(s)
Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Regulación del Desarrollo de la Expresión Génica , Rombencéfalo/embriología , Transcripción Genética , Animales , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/metabolismo , Ratones , Morfogénesis , Mutación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Rombencéfalo/anatomía & histología
18.
J Neurosci ; 28(23): 5891-900, 2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-18524893

RESUMEN

Krox20/Egr2 is a zinc finger transcription factor that plays essential roles in several developmental processes, including peripheral nervous system myelination by Schwann cells, where it acts as a master gene regulator. Krox20 is known to interact with cofactors of the Nab family and a mutation affecting isoleucine 268, which prevents this interaction, has been shown to result in congenital hypomyelinating neuropathy in humans. To further investigate the role of this interaction, we have introduced such a mutation, Krox20(I268F), in the mouse germ line. Clinical, immunohistochemical, and ultrastructural analyses of the homozygous mutants reveal that they develop a severe hypomyelination phenotype that mimics the human syndrome. Furthermore, a time-course analysis of the disease indicates that it follows a biphasic evolution, the hypomyelination phase being followed by a dramatic demyelination. Although for the regulation of most analyzed Krox20 target genes the mutation behaves as a loss of function, this is not the case for a few of them. This differential effect indicates that the molecular function of the Krox20-Nab interaction is target dependent and might explain the degradation of the residual myelin, because of imbalances in its composition. In conclusion, this work provides a novel and useful model for severe human peripheral neuropathies.


Asunto(s)
Sustitución de Aminoácidos/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteínas de Neoplasias/genética , Enfermedades del Sistema Nervioso Periférico/genética , Proteínas Represoras/genética , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Masculino , Ratones , Ratones Mutantes , Proteínas de Neoplasias/metabolismo , Fibras Nerviosas Mielínicas/patología , Fibras Nerviosas Mielínicas/fisiología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/patología , Unión Proteica/genética , Proteínas Represoras/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...