Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 10: 625576, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33718257

RESUMEN

Q fever is a zoonotic disease caused by the bacteria Coxiella burnetii. Domestic ruminants are the primary source for human infection, and the identification of likely contamination routes from the reservoir animals the critical point to implement control programs. This study shows that Q fever is detected in Belgium in abortion of cattle, goat and sheep at a different degree of apparent prevalence (1.93%, 9.19%, and 5.50%, respectively). In addition, and for the first time, it is detected in abortion of alpaca (Vicugna pacos), raising questions on the role of these animals as reservoirs. To determine the relationship between animal and human strains, Multiple Locus Variable-number Tandem Repeat Analysis (MLVA) (n=146), Single-Nucleotide Polymorphism (SNP) (n=92) and Whole Genome Sequencing (WGS) (n=4) methods were used to characterize samples/strains during 2009-2019. Three MLVA clusters (A, B, C) subdivided in 23 subclusters (A1-A12, B1-B8, C1-C3) and 3 SNP types (SNP1, SNP2, SNP6) were identified. The SNP2 type/MLVA cluster A was the most abundant and dispersed genotype over the entire territory, but it seemed not responsible for human cases, as it was only present in animal samples. The SNP1/MLVA B and SNP6/MLVA C clusters were mostly found in small ruminant and human samples, with the rare possibility of spillovers in cattle. SNP1/MLVA B cluster was present in all Belgian areas, while the SNP6/MLVA C cluster appeared more concentrated in the Western provinces. A broad analysis of European MLVA profiles confirmed the host-species distribution described for Belgian samples. In silico genotyping (WGS) further identified the spacer types and the genomic groups of C. burnetii Belgian strains: cattle and goat SNP2/MLVA A isolates belonged to ST61 and genomic group III, while the goat SNP1/MLVA B strain was classified as ST33 and genomic group II. In conclusion, Q fever is widespread in all Belgian domestic ruminants and in alpaca. We determined that the public health risk in Belgium is likely linked to specific genomic groups (SNP1/MLVA B and SNP6/MLVA C) mostly found in small ruminant strains. Considering the concordance between Belgian and European results, these considerations could be extended to other European countries.


Asunto(s)
Enfermedades de los Bovinos , Coxiella burnetii , Enfermedades de las Cabras , Fiebre Q , Enfermedades de las Ovejas , Animales , Bélgica/epidemiología , Bovinos , Enfermedades de los Bovinos/epidemiología , Coxiella burnetii/genética , Dermatoglifia del ADN , Europa (Continente) , Enfermedades de las Cabras/epidemiología , Cabras , Humanos , Filogeografía , Fiebre Q/epidemiología , Fiebre Q/veterinaria , Ovinos , Enfermedades de las Ovejas/epidemiología
2.
Vet Sci ; 4(4)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29194353

RESUMEN

Animal leptospirosis, exempt in rodents, manifests as peculiar biology where the animal can function, simultaneously or not, as a susceptible host or reservoir. In the first case, clinical symptoms are likely. In the second case, infection is subclinical and manifestations are mild or absent. Mild clinical symptoms encompass reproductive failure in production animals for host-adapted Leptospira sp. serovars. This work presents a study on Leptospira sp. infection in a mixed-species (bovine and swine) farm with documented reproductive disorders in the cattle unit. A long calving interval (above 450 days) was the hallmark observed in cows. Some cows (2/26 tested) presented a high titre of antibodies against Leptospira sp. serogroup Sejroe, but the overall within-herd prevalence was low (11.5% and 7.7% for cut-off titres of 1:30 and 1:100, respectively). The in-herd prevalence of leptospirosis in the sow unit (determined for 113/140 animals) was high when using a lowered cut-off threshold (32.7% vs. 1.8% for cut-off titre of 1:30 and 1:100, respectively). In this unit, the most prevalent serogroup was Autumnalis. The final diagnostic confirmation of Leptospira sp. maintenance within the farm was obtained through detection by PCR of Leptospira sp. DNA in an aborted swine litter. Despite the fact that a common causative infective agent was diagnosed in both species, the direct link between the two animal units was not found. Factors such as drinking from the same water source and the use of manure prepared with the swine slurry might raise suspicion of a possible cross-contamination between the two units. In conclusion, this work suggests that leptospirosis be included in the differential diagnosis of reproductive disorders and spontaneous abortions in production animals and provides data that justify the use of a lowered threshold cut-off for herd diagnosis.

3.
PLoS One ; 12(4): e0174756, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28384245

RESUMEN

OBJECTIVES: The aim of this study was to characterize by classical biotyping and Multi-Locus variable number tandem repeats (VNTR) Analysis (MLVA) all Brucella spp. derived from human cases in Belgium from 1996 to 2015. Final goals were to determine the species and biovar, to trace-back on genetic grounds the origin of each strain when patient history and risk factors were missing, and to survey for particular trends at the national level. METHODS: A total of 37 Brucella strains, isolated from 37 patients in Belgium, were analyzed by both classical biotyping and MLVA, and the genetic patterns compared to those of human strains isolated worldwide. RESULTS: Classical biotyping revealed that isolates were mainly Brucella melitensis. Most of them belonged to biovar 3, the most abundant biovar in the Mediterranean region. MLVA confirmed that Brucella melitensis is too diverse in VNTRs to be able to make clusters associated to each biovar, but it allowed retrieving precious epidemiological information. The analysis highlighted the imported nature of the strains from all over the world with a dominant part from the Mediterranean countries. Findings of the MLVA11 testing were in line with the travel history of patients coming from Italy, Turkey, Lebanon and Peru. The analysis was particularly useful because it suggested the geographical origin of the infection for 12/16 patients for whom no case history was available. CONCLUSION: Classical biotyping and MLVA analysis are not exclusive but remain complementary tools for Brucella melitensis strain surveillance. MLVA11 is sufficient for Brucella-free countries such as Belgium to trace the geographical origin of infection, but complete MLVA16 is needed to search for links with endemic areas.


Asunto(s)
Brucella/genética , Brucelosis/epidemiología , Técnicas de Tipificación Bacteriana , Bélgica/epidemiología , Brucella/aislamiento & purificación , Brucelosis/microbiología , ADN Bacteriano/genética , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Repeticiones de Minisatélite , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA