Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0299354, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483966

RESUMEN

The goal of this study is to investigate the origin, prevalence, and evolution of the pESI megaplasmid in Salmonella isolated from animals, foods, and humans. We queried 510,097 Salmonella genomes under the National Center for Biotechnology Information (NCBI) Pathogen Detection (PD) database for the presence of potential sequences containing the pESI plasmid in animal, food, and environmental sources. The presence of the pESI megaplasmid was confirmed by using seven plasmid-specific markers (rdA, pilL, SogS, TrbA, ipf, ipr2 and IncFIB(pN55391)). The plasmid and chromosome phylogeny of these isolates was inferred from single nucleotide polymorphisms (SNPs). Our search resolved six Salmonella clusters carrying the pESI plasmid. Four were emergent Salmonella Infantis clusters, and one each belonged to serovar Senftenberg and Alachua. The Infantis cluster with a pESI plasmid carrying blaCTX-M-65 gene was the biggest of the four emergent Infantis clusters, with over 10,000 isolates. This cluster was first detected in South America and has since spread widely in United States. Over time the composition of pESI in United States has changed with the average number of resistance genes showing a decrease from 9 in 2014 to 5 in 2022, resulting from changes in gene content in two integrons present in the plasmid. A recent and emerging cluster of Senftenberg, which carries the blaCTX-M-65 gene and is primarily associated with turkey sources, was the second largest in the United States. SNP analysis showed that this cluster likely originated in North Carolina with the recent acquisition of the pESI plasmid. A single Alachua isolate from turkey was also found to carry the pESI plasmid containing blaCTX-M-65 gene. The study of the pESI plasmid, its evolution and mechanism of spread can help us in developing appropriate strategies for the prevention and further spread of this multi-drug resistant plasmid in Salmonella in poultry and humans.


Asunto(s)
Salmonella enterica , Humanos , Animales , Estados Unidos , Serogrupo , Antibacterianos/farmacología , Resistencia a las Cefalosporinas/genética , Pollos/genética , Virulencia/genética , Salmonella , Plásmidos/genética , Farmacorresistencia Bacteriana Múltiple/genética
3.
J Food Prot ; 87(1): 100192, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37949412

RESUMEN

Antimicrobial resistance (AMR) trends in 114 generic Escherichia coli isolated from channel catfish and related fish species were investigated in this study. Of these, 45 isolates were from commercial-sized channel catfish harvested from fishponds in Alabama, while 69 isolates were from Siluriformes products, accessed from the U.S. Department of Agriculture Food Safety and Inspection Service' (FSIS) National Antimicrobial Resistance Monitoring System (NARMS) program. Antibiotic susceptibility testing and whole genome sequencing were performed using the GenomeTrakr protocol. Upon analysis, the fishpond isolates showed resistance to ampicillin (44%), meropenem (7%) and azithromycin (4%). The FSIS NARMS isolates showed resistance to tetracycline (31.9%), chloramphenicol (20.3%), sulfisoxazole (17.4%), ampicillin (5.8%) and trimethoprim-sulfamethoxazole, nalidixic acid, amoxicillin-clavulanic acid, azithromycin and cefoxitin below 5% each. There was no correlation between genotypic and phenotypic resistance in the fishpond isolates, however, there was in NARMS isolates for folate pathway antagonists: Sulfisoxazole vs. sul1 and sul2 (p = 0.0042 and p < 0.0001, respectively) and trimethoprim-sulfamethoxazole vs. dfrA16 and sul1 (p = 0.0290 and p = 0.013, respectively). Furthermore, correlations were found for tetracyclines: Tetracycline vs. tet(A) and tet(B) (p < 0.0001 each), macrolides: Azithromycin vs. mph(E) and msr(E) (p = 0.0145 each), phenicols: Chloramphenicol vs. mdtM (p < 0.0001), quinolones: Nalidixic acid vs. gyrA_S83L=POINT (p = 0.0004), and ß-lactams: Ampicillin vs. blaTEM-1 (p < 0.0001). Overall, we recorded differences in antimicrobial susceptibility testing profiles, phenotypic-genotypic concordance, and resistance to critically important antimicrobials, which may be a public health concern.


Asunto(s)
Escherichia coli , Ictaluridae , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Azitromicina/farmacología , Tetraciclina/farmacología , Ácido Nalidíxico/farmacología , Combinación Trimetoprim y Sulfametoxazol/farmacología , Sulfisoxazol/farmacología , Pruebas de Sensibilidad Microbiana , Ampicilina/farmacología , Cloranfenicol
4.
Microbiol Spectr ; 12(1): e0348523, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37991374

RESUMEN

IMPORTANCE: Macrolides of different ring sizes are critically important antimicrobials for human medicine and veterinary medicine, though the widely used 15-membered ring azithromycin in humans is not approved for use in veterinary medicine. We document here the emergence of azithromycin-resistant Salmonella among the NARMS culture collections between 2011 and 2021 in food animals and retail meats, some with co-resistance to ceftriaxone or decreased susceptibility to ciprofloxacin. We also provide insights into the underlying genetic mechanisms and genomic contexts, including the first report of a novel combination of azithromycin resistance determinants and the characterization of multidrug-resistant plasmids. Further, we highlight the emergence of a multidrug-resistant Salmonella Newport clone in food animals (mainly cattle) with both azithromycin resistance and decreased susceptibility to ciprofloxacin. These findings contribute to a better understating of azithromycin resistance mechanisms in Salmonella and warrant further investigations on the drivers behind the emergence of resistant clones.


Asunto(s)
Azitromicina , Farmacorresistencia Bacteriana Múltiple , Humanos , Estados Unidos , Animales , Bovinos , Azitromicina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Salmonella/genética , Antibacterianos/farmacología , Carne , Ciprofloxacina/farmacología , Genómica , Pruebas de Sensibilidad Microbiana
5.
Foods ; 11(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35804790

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) cause urinary tract and potentially life-threatening invasive infections. Unfortunately, the origins of ExPEC are not always clear. We used genomic data of E. coli isolates from five U.S. government organizations to evaluate potential sources of ExPEC infections. Virulence gene analysis of 38,032 isolates from human, food animal, retail meat, and companion animals classified the subset of 8142 non-diarrheagenic isolates into 40 virulence groups. Groups were identified as low, medium, and high relative risk of containing ExPEC strains, based on the proportion of isolates recovered from humans. Medium and high relative risk groups showed a greater representation of sequence types associated with human disease, including ST-131. Over 90% of food source isolates belonged to low relative risk groups, while >60% of companion animal isolates belonged to medium or high relative risk groups. Additionally, 18 of the 26 most prevalent antimicrobial resistance determinants were more common in high relative risk groups. The associations between antimicrobial resistance and virulence potentially limit treatment options for human ExPEC infections. This study demonstrates the power of large-scale genomics to assess potential sources of ExPEC strains and highlights the importance of a One Health approach to identify and manage these human pathogens.

6.
J Food Prot ; 85(5): 755-772, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35259246

RESUMEN

ABSTRACT: This multiagency report developed by the Interagency Collaboration for Genomics for Food and Feed Safety provides an overview of the use of and transition to whole genome sequencing (WGS) technology for detection and characterization of pathogens transmitted commonly by food and for identification of their sources. We describe foodborne pathogen analysis, investigation, and harmonization efforts among the following federal agencies: National Institutes of Health; Department of Health and Human Services, Centers for Disease Control and Prevention (CDC) and U.S. Food and Drug Administration (FDA); and the U.S. Department of Agriculture, Food Safety and Inspection Service, Agricultural Research Service, and Animal and Plant Health Inspection Service. We describe single nucleotide polymorphism, core-genome, and whole genome multilocus sequence typing data analysis methods as used in the PulseNet (CDC) and GenomeTrakr (FDA) networks, underscoring the complementary nature of the results for linking genetically related foodborne pathogens during outbreak investigations while allowing flexibility to meet the specific needs of Interagency Collaboration partners. We highlight how we apply WGS to pathogen characterization (virulence and antimicrobial resistance profiles) and source attribution efforts and increase transparency by making the sequences and other data publicly available through the National Center for Biotechnology Information. We also highlight the impact of current trends in the use of culture-independent diagnostic tests for human diagnostic testing on analytical approaches related to food safety and what is next for the use of WGS in the area of food safety.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Animales , Brotes de Enfermedades/prevención & control , Inocuidad de los Alimentos , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Genómica , Estados Unidos , Secuenciación Completa del Genoma
7.
Front Microbiol ; 12: 777817, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867920

RESUMEN

Salmonella enterica is a significant and phylogenetically diverse zoonotic pathogen. To understand its genomic heterogeneity and antimicrobial resistance, we performed long-read sequencing on Salmonella isolated from retail meats and food animals. A collection of 134 multidrug-resistant isolates belonging to 33 serotypes were subjected to PacBio sequencing. One major locus of diversity among these isolates was the presence and orientation of Salmonella pathogenic islands (SPI), which varied across different serotypes but were largely conserved within individual serotypes. We also identified insertion of an IncQ resistance plasmid into the chromosome of fourteen strains of serotype I 4,[5],12:i:- and the Salmonella genomic island 1 (SGI-1) in five serotypes. The presence of various SPIs, SGI-1 and integrated plasmids contributed significantly to the genomic variability and resulted in chromosomal resistance in 55.2% (74/134) of the study isolates. A total of 93.3% (125/134) of isolates carried at least one plasmid, with isolates carrying up to seven plasmids. We closed 233 plasmid sequences of thirteen replicon types, along with twelve hybrid plasmids. Some associations between Salmonella isolate source, serotype, and plasmid type were seen. For instance, IncX plasmids were more common in serotype Kentucky from retail chicken. Plasmids IncC and IncHI had on average more than five antimicrobial resistance genes, whereas in IncX, it was less than one per plasmid. Overall, 60% of multidrug resistance (MDR) strains that carried >3 AMR genes also carried >3 heavy metal resistance genes, raising the possibility of co-selection of antimicrobial resistance in the presence of heavy metals. We also found nine isolates representing four serotypes that carried virulence plasmids with the spv operon. Together, these data demonstrate the power of long-read sequencing to reveal genomic arrangements and integrated plasmids with a high level of resolution for tracking and comparing resistant strains from different sources. Additionally, the findings from this study will help expand the reference set of closed Salmonella genomes that can be used to improve genome assembly from short-read data commonly used in One Health antimicrobial resistance surveillance.

8.
Foodborne Pathog Dis ; 16(7): 441-450, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31194586

RESUMEN

Whole-genome sequencing (WGS) is increasingly used by food regulatory and public health agencies in the United States to facilitate the detection, investigation, and control of foodborne bacterial outbreaks, and food regulatory and other activities in support of food safety. WGS has added a level of precision to the surveillance leading to faster and more efficient decision making in the preparedness and response to foodborne infections. In this review, we report the history of WGS technology at the Centers for Disease Control & Prevention (CDC), the Food and Drug Administration (FDA), and the United States Department of Agriculture's Food Safety and Inspection Service (USDA/FSIS) as it applies to food safety. The basic principle of the method, the analysis, and interpretation of the data are explained as is its major strengths and limitations. We also describe the benefits and possibilities of the WGS technology to the food industry throughout the farm-to-fork continuum and the prospects of metagenomic sequencing applied directly to the sample specimen with or without pre-enrichment culture.


Asunto(s)
Inocuidad de los Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Vigilancia en Salud Pública , Salud Pública , Secuenciación Completa del Genoma/historia , Brotes de Enfermedades/prevención & control , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Estados Unidos , United States Government Agencies
9.
mSphere ; 4(3)2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243079

RESUMEN

Genomic analyses were performed on florfenicol-resistant (FFNr) Campylobacter coli isolates recovered from cattle, and the cfr(C) gene-associated multidrug resistance (MDR) plasmid was characterized. Sixteen FFNrC. coli isolates recovered between 2013 and 2018 from beef cattle were sequenced using MiSeq. Genomes and plasmids were found to be closed for three of the isolates using the PacBio system. Single nucleotide polymorphisms (SNPs) across the genome and the structures of MDR plasmids were investigated. Conjugation experiments were performed to determine the transferability of cfr(C)-associated MDR plasmids. The spectrum of resistance encoded by the cfr(C) gene was further investigated by agar dilution antimicrobial susceptibility testing. All 16 FFNr isolates were MDR and exhibited coresistance to ciprofloxacin, nalidixic acid, clindamycin, and tetracycline. All isolates shared the same resistance genotype, carrying aph (3')-III, hph, ΔaadE (truncated), blaOXA-61, cfr(C), and tet(O) genes plus a mutation of GyrA (T86I). The cfr(C), aph (3')-III, hph, ΔaadE, and tet(O) genes were colocated on transferable MDR plasmids ranging in size from 48 to 50 kb. These plasmids showed high sequence homology with the pTet plasmid and carried several Campylobacter virulence genes, including virB2, virB4, virB5, VirB6, virB7, virB8, virb9, virB10, virB11, and virD4 The cfr(C) gene conferred resistance to florfenicol (8 to 32 µg/ml), clindamycin (512 to 1,024 µg/ml), linezolid (128 to 512 µg/ml), and tiamulin (1,024 µg/ml). Phylogenetic analysis showed SNP differences ranging from 11 to 2,248 SNPs among the 16 isolates. The results showed that the cfr(C) gene located in the conjugative pTet MDR/virulence plasmid is present in diverse strains, where it confers high levels of resistance to several antimicrobials, including linezolid, a critical drug for treating infections by Gram-positive bacteria in humans. This report highlights the power of genomic antimicrobial resistance surveillance to uncover the intricacies of transmissible coresistance and provides information that is needed for accurate risk assessment and mitigation strategies.IMPORTANCECampylobacter is a leading cause of foodborne diarrheal illness worldwide, with more than one million cases each year in the United States alone. The global emergence of antimicrobial resistance in this pathogen has become a growing public health concern. Florfenicol-resistant (FFNr) Campylobacter has been very rare in the United States. In this study, we employed whole-genome sequencing to characterize 16 multidrug-resistant Campylobacter coli isolates recovered from cattle in the United States. A gene [cfr(C)] was found to be responsible for resistance not only to florfenicol but also to several other antimicrobials, including linezolid, a critical drug for treating infections by Gram-positive bacteria in humans. The results showed that cfr(C) is located in a conjugative pTet MDR/virulence plasmid. This report highlights the power of antimicrobial resistance surveillance to uncover the intricacies of transmissible coresistance and provides information that is needed for accurate risk assessment and mitigation strategies.


Asunto(s)
Antibacterianos/farmacología , Campylobacter coli/efectos de los fármacos , Campylobacter coli/genética , Ciego/microbiología , Farmacorresistencia Bacteriana Múltiple , Tianfenicol/análogos & derivados , Animales , Bovinos/microbiología , ADN Bacteriano/genética , Genoma Bacteriano , Genómica , Pruebas de Sensibilidad Microbiana , Filogenia , Tianfenicol/farmacología , Estados Unidos
10.
J Antimicrob Chemother ; 73(12): 3254-3258, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272180

RESUMEN

Objectives: To sequence the genomes and determine the genetic mechanisms for linezolid resistance identified in three strains of Enterococcus isolated from cattle and swine caecal contents as part of the US National Antimicrobial Resistance Monitoring System (NARMS) surveillance programme. Methods: Broth microdilution was used for in vitro antimicrobial susceptibility testing to assess linezolid resistance. Resistance mechanisms and plasmid types were identified from data generated by WGS on Illumina® and PacBio® platforms. Conjugation experiments were performed to determine whether identified mechanisms were transmissible. Results: Linezolid resistance plasmids containing optrA were identified in two Enterococcus faecalis isolates and one Enterococcus faecium. The E. faecium isolate also carried the linezolid resistance gene cfr on the same plasmid as optrA. The linezolid resistance plasmids had various combinations of additional resistance genes conferring resistance to phenicols (fexA), aminoglycosides [spc and aph(3')-III] and macrolides [erm(A) and erm(B)]. One of the plasmids was confirmed to be transmissible by conjugation, resulting in linezolid resistance in the transconjugant. Conclusions: To the best of our knowledge, this is the first identification of linezolid resistance in the USA in bacteria isolated from food animals. The oxazolidinone class of antibiotics is not used in food animals in the USA, but the genes responsible for resistance were identified on plasmids with other resistance markers, indicating that there may be co-selection for these plasmids due to the use of different antimicrobials. The transmissibility of one of the plasmids demonstrated the potential for linezolid resistance to spread horizontally. Additional surveillance is necessary to determine whether similar plasmids are present in human strains of Enterococcus.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Enterococcus faecalis/genética , Enterococcus faecium/genética , Productos de la Carne/microbiología , Plásmidos/genética , Animales , Técnicas de Tipificación Bacteriana , Bovinos/microbiología , ADN Bacteriano/genética , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/aislamiento & purificación , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/aislamiento & purificación , Genoma Bacteriano , Linezolid/farmacología , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Aves de Corral/microbiología , ARN Ribosómico 23S/genética , Porcinos/microbiología , Estados Unidos
11.
Foodborne Pathog Dis ; 15(11): 701-704, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30153043

RESUMEN

We tested a diverse set of 500 isolates of nontyphoidal Salmonella enterica subsp. enterica from various animal, food, and human clinical sources for susceptibility to antimicrobials currently lacking epidemiological cutoff values (ECOFFs) set by the European Committee on Antimicrobial Susceptibility Testing. A consortium of five different laboratories each tested 100 isolates, using broth microdilution panels containing twofold dilutions of ceftriaxone, cefepime, and colistin to determine the minimum inhibitory concentrations of each drug when tested against the Salmonella isolates. Based on the resulting data, new ECOFFs of 0.25 µg/mL for ceftriaxone, 0.12 µg/mL for cefepime, and 2 µg/mL for colistin have been proposed. These thresholds will aid in the identification of Salmonella that have phenotypically detectable resistance mechanisms to these important antimicrobials.


Asunto(s)
Cefepima/farmacología , Ceftriaxona/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana/normas , Salmonella enterica/efectos de los fármacos , Animales , Antibacterianos/farmacología , Humanos , Salmonella enterica/aislamiento & purificación , Estados Unidos
12.
Foodborne Pathog Dis ; 15(3): 153-160, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29638165

RESUMEN

On June 28, 2013, the Food Safety and Inspection Service (FSIS) was notified by the Centers for Disease Control and Prevention (CDC) of an investigation of a multistate cluster of illnesses of Salmonella enterica serovar Heidelberg. Since case-patients in the cluster reported consumption of a variety of chicken products, FSIS used a simple likelihood-based approach using traceback information to focus on intensified sampling efforts. This article describes the multiphased product sampling approach taken by FSIS when epidemiologic evidence implicated chicken products from multiple establishments operating under one corporation. The objectives of sampling were to (1) assess process control of chicken slaughter and further processing and (2) determine whether outbreak strains were present in products from these implicated establishments. As part of the sample collection process, data collected by FSIS personnel to characterize product included category (whole chicken and type of chicken parts), brand, organic or conventional product, injection with salt solutions or flavorings, and whether product was skinless or skin-on. From the period September 9, 2013, through October 31, 2014, 3164 samples were taken as part of this effort. Salmonella percent positive declined from 19.7% to 5.3% during this timeframe as a result of regulatory and company efforts. The results of intensified sampling for this outbreak investigation informed an FSIS regulatory response and corrective actions taken by the implicated establishments. The company noted that a multihurdle approach to reduce Salmonella in products was taken, including on-farm efforts such as environmental testing, depopulation of affected flocks, disinfection of affected houses, vaccination, and use of various interventions within the establishments over the course of several months.


Asunto(s)
Pollos/microbiología , Brotes de Enfermedades , Enfermedades Transmitidas por los Alimentos/epidemiología , Intoxicación Alimentaria por Salmonella/epidemiología , Salmonella enterica/inmunología , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Inspección de Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos , Funciones de Verosimilitud , Intoxicación Alimentaria por Salmonella/microbiología , Salmonella enterica/efectos de los fármacos , Salmonella enterica/aislamiento & purificación , Estados Unidos/epidemiología
13.
Artículo en Inglés | MEDLINE | ID: mdl-28784677

RESUMEN

Fluoroquinolones are important antimicrobial drugs used to treat human Salmonella infections, and resistance is rare in the United States for isolates from human and animal sources. Recently, a number of Salmonella isolates from swine cecal contents and retail pork products from National Antimicrobial Resistance Monitoring System (NARMS) surveillance exhibited decreased susceptibility to ciprofloxacin. We identified two qnrB19 quinolone resistance plasmids that are predominantly responsible for this phenomenon and found them distributed among several Salmonella serotypes isolated throughout the United States.


Asunto(s)
Antibacterianos/farmacología , Ciego/microbiología , Ciprofloxacina/farmacología , Plásmidos/genética , Carne Roja/microbiología , Salmonella/efectos de los fármacos , Salmonella/genética , Animales , Farmacorresistencia Bacteriana/genética , Contaminación de Alimentos/análisis , Pruebas de Sensibilidad Microbiana , Salmonella/aislamiento & purificación , Porcinos , Estados Unidos
14.
Foodborne Pathog Dis ; 14(10): 545-557, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28792800

RESUMEN

Drug-resistant bacterial infections pose a serious and growing public health threat globally. In this review, we describe the role of the National Antimicrobial Resistance Monitoring System (NARMS) in providing data that help address the resistance problem and show how such a program can have broad positive impacts on public health. NARMS was formed two decades ago to help assess the consequences to human health arising from the use of antimicrobial drugs in food animal production in the United States. A collaboration among the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration, the United States Department of Agriculture, and state and local health departments, NARMS uses an integrated "One Health" approach to monitor antimicrobial resistance in enteric bacteria from humans, retail meat, and food animals. NARMS has adapted to changing needs and threats by expanding surveillance catchment areas, examining new isolate sources, adding bacteria, adjusting sampling schemes, and modifying antimicrobial agents tested. NARMS data are not only essential for ensuring that antimicrobial drugs approved for food animals are used in ways that are safe for human health but they also help address broader food safety priorities. NARMS surveillance, applied research studies, and outbreak isolate testing provide data on the emergence of drug-resistant enteric bacteria; genetic mechanisms underlying resistance; movement of bacterial populations among humans, food, and food animals; and sources and outcomes of resistant and susceptible infections. These data can be used to guide and evaluate the impact of science-based policies, regulatory actions, antimicrobial stewardship initiatives, and other public health efforts aimed at preserving drug effectiveness, improving patient outcomes, and preventing infections. Many improvements have been made to NARMS over time and the program will continue to adapt to address emerging resistance threats, changes in clinical diagnostic practices, and new technologies, such as whole genome sequencing.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana , Enfermedades Transmitidas por los Alimentos/epidemiología , Salud Pública , Animales , Centers for Disease Control and Prevention, U.S. , Monitoreo Epidemiológico , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos , Estados Unidos/epidemiología , United States Department of Agriculture , United States Food and Drug Administration
15.
Artículo en Inglés | MEDLINE | ID: mdl-28483962

RESUMEN

We sequenced the genomes of 10 Salmonella enterica serovar Infantis isolates containing blaCTX-M-65 obtained from chicken, cattle, and human sources collected between 2012 and 2015 in the United States through routine National Antimicrobial Resistance Monitoring System (NARMS) surveillance and product sampling programs. We also completely assembled the plasmids from four of the isolates. All isolates had a D87Y mutation in the gyrA gene and harbored between 7 and 10 resistance genes [aph(4)-Ia, aac(3)-IVa, aph(3')-Ic, blaCTX-M-65, fosA3, floR, dfrA14, sul1, tetA, aadA1] located in two distinct sites of a megaplasmid (∼316 to 323 kb) similar to that described in a blaCTX-M-65-positive S Infantis isolate from a patient in Italy. High-quality single nucleotide polymorphism (hqSNP) analysis revealed that all U.S. isolates were closely related, separated by only 1 to 38 pairwise high-quality SNPs, indicating a high likelihood that strains from humans, chickens, and cattle recently evolved from a common ancestor. The U.S. isolates were genetically similar to the blaCTX-M-65-positive S Infantis isolate from Italy, with a separation of 34 to 47 SNPs. This is the first report of the blaCTX-M-65 gene and the pESI (plasmid for emerging S Infantis)-like megaplasmid from S Infantis in the United States, and it illustrates the importance of applying a global One Health human and animal perspective to combat antimicrobial resistance.


Asunto(s)
Antibacterianos/farmacología , Salmonella enterica/efectos de los fármacos , beta-Lactamasas/metabolismo , Animales , Bovinos , Pollos , Microbiología de Alimentos , Humanos , Pruebas de Sensibilidad Microbiana , Polimorfismo de Nucleótido Simple/genética , Salmonella enterica/enzimología , Estados Unidos , beta-Lactamasas/genética
16.
J Food Prot ; 74(8): 1387-94, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21819672

RESUMEN

Measuring commonly occurring, nonpathogenic organisms on poultry products may be used for designing statistical process control systems that could result in reductions of pathogen levels. The extent of pathogen level reduction that could be obtained from actions resulting from monitoring these measurements over time depends upon the degree of understanding cause-effect relationships between processing variables, selected output variables, and pathogens. For such measurements to be effective for controlling or improving processing to some capability level within the statistical process control context, sufficiently frequent measurements would be needed to help identify processing deficiencies. Ultimately the correct balance of sampling and resources is determined by those characteristics of deficient processing that are important to identify. We recommend strategies that emphasize flexibility, depending upon sampling objectives. Coupling the measurement of levels of indicator organisms with practical emerging technologies and suitable on-site platforms that decrease the time between sample collections and interpreting results would enhance monitoring process control.


Asunto(s)
Mataderos/normas , Seguridad de Productos para el Consumidor , Carne/microbiología , Productos Avícolas/microbiología , Medición de Riesgo , Animales , Seguridad de Productos para el Consumidor/normas , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Microbiología de Alimentos , Humanos , Indicadores y Reactivos , Carne/normas , Productos Avícolas/normas , Modelos de Riesgos Proporcionales , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA