Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 35(1): 102101, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38204914

RESUMEN

Pseudoexons are nonfunctional intronic sequences that can be activated by deep-intronic sequence variation. Activation increases pseudoexon inclusion in mRNA and interferes with normal gene expression. The PCCA c.1285-1416A>G variation activates a pseudoexon and causes the severe metabolic disorder propionic acidemia by deficiency of the propionyl-CoA carboxylase enzyme encoded by PCCA and PCCB. We characterized this pathogenic pseudoexon activation event in detail and identified hnRNP A1 to be important for normal repression. The PCCA c.1285-1416A>G variation disrupts an hnRNP A1-binding splicing silencer and simultaneously creates a splicing enhancer. We demonstrate that blocking this region of regulation with splice-switching antisense oligonucleotides restores normal splicing and rescues enzyme activity in patient fibroblasts and in a cellular model created by CRISPR gene editing. Interestingly, the PCCA pseudoexon offers an unexploited potential to upregulate gene expression because healthy tissues show relatively high inclusion levels. By blocking inclusion of the nonactivated wild-type pseudoexon, we can increase both PCCA and PCCB protein levels, which increases the activity of the heterododecameric enzyme. Surprisingly, we can increase enzyme activity from residual levels in not only patient fibroblasts harboring PCCA missense variants but also those harboring PCCB missense variants. This is a potential treatment strategy for propionic acidemia.

2.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36768524

RESUMEN

Propionic acidemia (PA) disorder shows major involvement of the heart, among other alterations. A significant number of PA patients develop cardiac complications, and available evidence suggests that this cardiac dysfunction is driven mainly by the accumulation of toxic metabolites. To contribute to the elucidation of the mechanistic basis underlying this dysfunction, we have successfully generated cardiomyocytes through the differentiation of induced pluripotent stem cells (iPSCs) from a PCCB patient and its isogenic control. In this human cellular model, we aimed to examine microRNAs (miRNAs) profiles and analyze several cellular pathways to determine miRNAs activity patterns associated with PA cardiac phenotypes. We have identified a series of upregulated cardiac-enriched miRNAs and alterations in some of their regulated signaling pathways, including an increase in the expression of cardiac damage markers and cardiac channels, an increase in oxidative stress, a decrease in mitochondrial respiration and autophagy; and lipid accumulation. Our findings indicate that miRNA activity patterns from PA iPSC-derived cardiomyocytes are biologically informative and advance the understanding of the molecular mechanisms of this rare disease, providing a basis for identifying new therapeutic targets for intervention strategies.


Asunto(s)
Cardiomiopatías , Cardiopatías , Células Madre Pluripotentes Inducidas , MicroARNs , Acidemia Propiónica , Humanos , Acidemia Propiónica/genética , Acidemia Propiónica/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Cardiomiopatías/metabolismo , Diferenciación Celular/genética , Cardiopatías/metabolismo , Homeostasis
3.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503868

RESUMEN

Propionic acidemia (PA), one of the most frequent life-threatening organic acidemias, is caused by mutations in either the PCCA or PCCB genes encoding both subunits of the mitochondrial propionyl-CoA carboxylase (PCC) enzyme. Cardiac alterations (hypertrophy, dilated cardiomyopathy, long QT) are one of the major causes of mortality in patients surviving the neonatal period. To overcome limitations of current cellular models of PA, we generated induced pluripotent stem cells (iPSCs) from a PA patient with defects in the PCCA gene, and successfully differentiated them into cardiomyocytes. PCCA iPSC-derived cardiomyocytes exhibited reduced oxygen consumption, an accumulation of residual bodies and lipid droplets, and increased ribosomal biogenesis. Furthermore, we found increased protein levels of HERP, GRP78, GRP75, SIG-1R and MFN2, suggesting endoplasmic reticulum stress and calcium perturbations in these cells. We also analyzed a series of heart-enriched miRNAs previously found deregulated in the heart tissue of a PA murine model and confirmed their altered expression. Our novel results show that PA iPSC-cardiomyocytes represent a promising model for investigating the pathological mechanisms underlying PA cardiomyopathies, also serving as an ex vivo platform for therapeutic evaluation.


Asunto(s)
Diferenciación Celular , Susceptibilidad a Enfermedades , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Acidemia Propiónica/etiología , Acidemia Propiónica/metabolismo , Animales , Biomarcadores , Línea Celular , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Metabolismo Energético , Expresión Génica , Humanos , Ratones , MicroARNs , Miocitos Cardíacos/ultraestructura , ARN Mensajero
5.
PLoS One ; 10(4): e0122966, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25853564

RESUMEN

The spf/ash mouse model of ornithine transcarbamylase (OTC) deficiency, a severe urea cycle disorder, is caused by a mutation (c.386G>A; p.R129H) in the last nucleotide of exon 4 of the Otc gene, affecting the 5' splice site and resulting in partial use of a cryptic splice site 48 bp into the adjacent intron. The equivalent nucleotide change and predicted amino acid change is found in OTC deficient patients. Here we have used liver tissue and minigene assays to dissect the transcriptional profile resulting from the "spf/ash" mutation in mice and man. For the mutant mouse, we confirmed liver transcripts corresponding to partial intron 4 retention by the use of the c.386+48 cryptic site and to normally spliced transcripts, with exon 4 always containing the c.386G>A (p.R129H) variant. In contrast, the OTC patient exhibited exon 4 skipping or c.386G>A (p.R129H)-variant exon 4 retention by using the natural or a cryptic splice site at nucleotide position c.386+4. The corresponding OTC tissue enzyme activities were between 3-6% of normal control in mouse and human liver. The use of the cryptic splice sites was reproduced in minigenes carrying murine or human mutant sequences. Some normally spliced transcripts could be detected in minigenes in both cases. Antisense oligonucleotides designed to block the murine cryptic +48 site were used in minigenes in an attempt to redirect splicing to the natural site. The results highlight the relevance of in depth investigations of the molecular mechanisms of splicing mutations and potential therapeutic approaches. Notably, they emphasize the fact that findings in animal models may not be applicable for human patients due to the different genomic context of the mutations.


Asunto(s)
Empalme Alternativo/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Ornitina Carbamoiltransferasa/genética , Sitios de Empalme de ARN/genética , Animales , Secuencia de Bases , Exones , Humanos , Intrones , Hígado/enzimología , Ratones , Mutación , Ornitina Carbamoiltransferasa/metabolismo , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/enzimología , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/metabolismo
6.
Epilepsia ; 54(2): 239-48, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23350806

RESUMEN

PURPOSE: Pyridoxine-dependent epilepsy seizure (PDE; OMIM 266100) is a disorder associated with severe seizures that can be controlled pharmacologically with pyridoxine. In the majority of patients with PDE, the disorder is caused by the deficient activity of the enzyme α-aminoadipic semialdehyde dehydrogenase (antiquitin protein), which is encoded by the ALDH7A1 gene. The aim of this work was the clinical, biochemical, and genetic analysis of 12 unrelated patients, mostly from Spain, in an attempt to provide further valuable data regarding the wide clinical, biochemical, and genetic spectrum of the disease. METHODS: The disease was confirmed based on the presence of α-aminoadipic semialdehyde (α-AASA) in urine measured by liquid chromatography tandem mass spectrometry (LC-MS/MS) and pipecolic acid (PA) in plasma and/or cerebrospinal fluid (CSF) measured by high performance liquid chromatography (HPLC)/MS/MS and by sequencing analysis of messenger RNA (mRNA) and genomic DNA of ALDH7A1. KEY FINDINGS: Most of the patients had seizures in the neonatal period, but they responded to vitamin B6 administration. Three patients developed late-onset seizures, and most patients showed mild-to-moderate postnatal developmental delay. All patients had elevated PA and α-AASA levels, even those who had undergone pyridoxine treatment for several years. The clinical spectrum of our patients is not limited to seizures but many of them show associated neurologic dysfunctions such as muscle tone alterations, irritability, and psychomotor retardation. The mutational spectrum of the present patients included 12 mutations, five already reported (c.500A>G, c.919C>T, c.1429G>C c.1217_1218delAT, and c.1482-1G>T) and seven novel sequence changes (c.75C>T, c.319G>T, c.554_555delAA, c.757C>T, c.787 + 1G>T, c.1474T>C, c.1093-?_1620+?). Only one mutation, p.G477R (c.1429G>C), was recurrent; this was detected in four different alleles. Transcriptional profile analysis of one patient's lymphoblasts and ex vivo splicing analysis showed the silent nucleotide change c.75C>T to be a novel splicing mutation creating a new donor splice site inside exon 1. Antisense therapy of the aberrant mRNA splicing in a lymphoblast cell line harboring mutation c.75C>T was successful. SIGNIFICANCE: The present results broaden our knowledge of PDE, provide information regarding the genetic background of PDE in Spain, afford data of use when making molecular-based prenatal diagnosis, and provide a cellular proof-of concept for antisense therapy application.


Asunto(s)
Epilepsia/tratamiento farmacológico , Epilepsia/genética , Terapia Genética/métodos , Oligonucleótidos Antisentido/uso terapéutico , Deficiencia de Vitamina B 6/complicaciones , Aldehído Deshidrogenasa/genética , Línea Celular , Análisis Mutacional de ADN , Epilepsia/etiología , Exones/genética , Femenino , Humanos , Hiperlisinemias/orina , Lactante , Recién Nacido , Linfocitos/efectos de los fármacos , Masculino , Mutación/genética , Polimorfismo de Nucleótido Simple , Empalme del ARN , Sacaropina Deshidrogenasas/deficiencia , Sacaropina Deshidrogenasas/orina , Espectrometría de Masas en Tándem
7.
Hum Mutat ; 21(4): 387-93, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12655548

RESUMEN

The R408W phenylketonuria mutation in Europe has arisen by recurrent mutation in the human phenylalanine hydroxylase (PAH) locus and is associated with two major PAH haplotypes. R408W-2.3 exhibits a west-to-east cline of relative frequency reaching its maximum in the Balto-Slavic region, while R408W-1.8 exhibits an east-to-west cline peaking in Connacht, the most westerly province of Ireland. Spatial autocorrelation analysis has demonstrated that the R408W-2.3 cline, like that of R408W-1.8, is consistent with a pattern likely to have been established by human dispersal. Genetic diversity within wild-type and R408W chromosomes in Europe was assessed through variable number tandem repeat (VNTR) nucleotide sequence variation and tetranucleotide short tandem repeat (STR) allelic associations. Wild-type VNTR-8 chromosomes exhibited two major cassette sequence organizations: (a1)5-b3-b2-c1 and (a1)5-b5-b2-c1. R408W-1.8 was predominantly associated with (a1)5-B5-B2-C1. Both wild-type vntr-3 and r408w-2.3 chromosomes exhibited a single invariant cassette sequence organization, a2-b2-c1. STR allele distributions associated with the cassette variants were consistent with greater diversity in the wild-type VNTR-8 lineage and were suggestive of different levels of diversity between R408W-1.8 and R408W-2.3. The finding of greater genetic diversity within the wild-type VNTR-8 lineage compared to VNTR-3 suggests that VNTR-8 may be older within the European population. However, in the absence of a more extensive STR data-set, no such conclusions are possible for the respective R408W mutant lineages.


Asunto(s)
Sustitución de Aminoácidos/genética , Arginina/genética , Variación Genética/genética , Mutación , Fenilcetonurias/genética , Triptófano/genética , Europa (Continente) , Efecto Fundador , Pruebas Genéticas , Humanos , Repeticiones de Microsatélite/genética , Repeticiones de Minisatélite/genética , Fenilcetonurias/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...