Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 10(11)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34834639

RESUMEN

Rhus michauxii is a perennial rhizomatous shrub native to the southeastern United States that is found mainly in sunny, dry, open rocky or sandy woodlands. Moreover, it is found on ridges or river bluffs in the inner coastal plane and lower piedmont of Virginia, Georgia, and the Carolinas. Habitat conversion to agriculture, suppression of fires, and low reproduction have caused R. michauxii to become rare and it is now federally listed as threatened. Methods are needed to multiply and conserve R. michauxii. Protocols were developed for seed cryopreservation, in vitro germination, and micropropagation for R. glabra and R. michauxii. Seed scarification in concentrated sulfuric acid for 6 h and germination on ½ MS medium resulted in germination up to 96% for control and cryopreserved seeds of R. glabra and 70 and 40% for control and cryopreserved seeds of R. michauxii. Shortly after germination in vitro, young seedlings were established in a greenhouse potting mix providing new plants from the endemic Georgia R. michauxii populations. Several of the findings meet goals within the R. michauxii recovery plan by providing methods for sexual and asexual multiplication and long-term seed storage under cryogenic conditions. The protocols developed will assist in the safeguarding and conservation of dwindling natural R. michauxii populations.

2.
Plants (Basel) ; 10(7)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34371665

RESUMEN

Xerophyllum asphodeloides (Xerophyllaceae), known as eastern turkeybeard, is an herbaceous perennial found in eastern North America. Due to decline and destruction of its habitat, several states rank X. asphodeloides as "Imperiled" to "Critically Imperiled". Protocols for seed cryopreservation, in vitro germination, sustainable shoot micropropagation, shoot establishment in soil, and seed germination are presented. Seeds from two tested sources were viable after 20 months of cryopreservation. Germination of isolated embryos in vitro was necessary to overcome strong seed dormancy. Shoot multiplication and elongation occurred on ½ MS medium without PGRs. Shoots rooted in vitro without PGRs or with 0.5 mg/L NAA or after NAA rooting powder treatment and placement in potting mix. When planted in wet, peaty soil mixes, shoots grew for two months and then declined. When planted in a drier planting mix containing aged bark, most plants continued growth. In the field, plant survival was 73% after three growing seasons. Safeguarding this species both ex situ and in situ is possible and offers a successful approach to conservation. Whole seeds germinated after double dormancy was overcome by incubation under warm moist conditions for 12 weeks followed by 12 weeks cold at 4 °C and then warm.

3.
Mol Phylogenet Evol ; 85: 76-87, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25689607

RESUMEN

The North American carnivorous pitcher plant genus Sarracenia (Sarraceniaceae) is a relatively young clade (<3 million years ago) displaying a wide range of morphological diversity in complex trapping structures. This recently radiated group is a promising system to examine the structural evolution and diversification of carnivorous plants; however, little is known regarding evolutionary relationships within the genus. Previous attempts at resolving the phylogeny have been unsuccessful, most likely due to few parsimony-informative sites compounded by incomplete lineage sorting. Here, we applied a target enrichment approach using multiple accessions to assess the relationships of Sarracenia species. This resulted in 199 nuclear genes from 75 accessions covering the putative 8-11 species and 8 subspecies/varieties. In addition, we recovered 42kb of plastome sequence from each accession to estimate a cpDNA-derived phylogeny. Unsurprisingly, the cpDNA had few parsimony-informative sites (0.5%) and provided little information on species relationships. In contrast, use of the targeted nuclear loci in concatenation and coalescent frameworks elucidated many relationships within Sarracenia even with high heterogeneity among gene trees. Results were largely consistent for both concatenation and coalescent approaches. The only major disagreement was with the placement of the purpurea complex. Moreover, results suggest an Appalachian massif biogeographic origin of the genus. Overall, this study highlights the utility of target enrichment using multiple accessions to resolve relationships in recently radiated taxa.


Asunto(s)
Evolución Biológica , Filogenia , Sarraceniaceae/clasificación , Núcleo Celular/genética , ADN de Cloroplastos/genética , ADN de Plantas/genética , Genes de Plantas , Funciones de Verosimilitud , Modelos Genéticos , Análisis de Secuencia de ADN
4.
Cryo Letters ; 35(1): 29-39, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24872155

RESUMEN

BACKGROUND: Habitat loss and over collection have caused North American pitcher plants to become rare, including U.S. federally endangered Sarracenia alabamensis and S. oreophila, and S. leucophylla, S. psittacina and S. purpurea spp. venosa, endangered in several states. OBJECTIVE: To develop reliable seed cryopreservation protocols for endangered Sarracenia species enabling similar germination percentages before and after storage in liquid nitrogen (LN) either in vivo or using in vitro tools. METHODS: Seed germination pre- and post-cryopreservation were compared following seed drying with germination in soil, aseptic environment with wet filter paper or enriched medium, and using scarification or stratification for dormancy removal. RESULTS: After cryostorage, germination in vitro (1/6- or 1/3-strength MS medium) increased compared to germination on peat moss. Germination pre- and post-cryopreservation was similar for S. alabamensis and S. oreophila when seeds were stratified and grown in vitro. S. leucophylla and S. psittacina also showed high germination after cryopreservation when germinated on medium following stratification. CONCLUSION: Rapid liquid nitrogen exposure and rewarming induced seed coat cracking that damaged seeds, likely allowing internal damage during acid scarification and microbial entry during germination in non-sterile environments.


Asunto(s)
Criopreservación , Germinación/fisiología , Sarraceniaceae/fisiología , Semillas/fisiología , Adaptación Fisiológica , Frío , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Germinación/efectos de los fármacos , Nitrógeno , América del Norte , Sarraceniaceae/efectos de los fármacos , Semillas/efectos de los fármacos , Ácidos Sulfúricos/farmacología
5.
Plant Dis ; 95(6): 633-639, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30731893

RESUMEN

A canker disease of Florida torreya (Torreya taxifolia) has been implicated in the decline of this critically endangered species in its native range of northern Florida and southeastern Georgia. In surveys of eight Florida torreya sites, cankers were present on all dead trees and 71 to 100% of living trees, suggesting that a fungal pathogen might be the causal agent. To identify the causal agent, nuclear ribosomal internal transcribed spacer region (ITS rDNA) sequences were determined for 115 fungi isolated from cankers on 46 symptomatic trees sampled at three sites in northern Florida. BLASTn searches of the GenBank nucleotide database, using the ITS rDNA sequences as the query, indicated that a novel Fusarium species designated Fsp-1 might be the etiological agent. Molecular phylogenetic analyses of partial translation elongation factor 1-alpha (EF-1) and RNA polymerase second largest subunit (RPB2) gene sequences indicate that Fsp-1 represents a novel species representing one of the earliest divergences within the Gibberella clade of Fusarium. Results of pathogenicity experiments established that the four isolates of Fsp-1 tested could induce canker symptoms on cultivated Florida torreya in a growth chamber. Koch's postulates were completed by the recovery and identification of Fsp-1 from cankers of the inoculated plants.

6.
Conserv Genet Resour ; 2(1): 75-79, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21170168

RESUMEN

Sarracenia species (pitcher plants) are carnivorous plants which obtain a portion of their nutrients from insects captured in the pitchers. Sarracenia species naturally hybridize with each other, and hybrid swarms have been identified. A number of the taxa within the genus are considered endangered. In order to facilitate evolutionary, ecological and conservation genetic analyses within the genus, we developed 25 microsatellite loci which show variability either within species or between species. Three S. purpurea populations were examined with 10 primer sets which showed within population variability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...