Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2519, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130855

RESUMEN

Metallic alloys have played essential roles in human civilization due to their balanced strength and ductility. Metastable phases and twins have been introduced to overcome the strength-ductility tradeoff in face-centered cubic (FCC) high-entropy alloys (HEAs). However, there is still a lack of quantifiable mechanisms to predict good combinations of the two mechanical properties. Here we propose a possible mechanism based on the parameter κ, the ratio of short-ranged interactions between closed-pack planes. It promotes the formation of various nanoscale stacking sequences and enhances the work-hardening ability of the alloys. Guided by the theory, we successfully designed HEAs with enhanced strength and ductility compared with other extensively studied CoCrNi-based systems. Our results not only offer a physical picture of the strengthening effects but can also be used as a practical design principle to enhance the strength-ductility synergy in HEAs.

2.
Data Brief ; 45: 108714, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36425963

RESUMEN

The microstructure of steel greatly influences the mechanical properties. For 9 wt% Cr steels, which are widely used in the power generation industry, the steels have a ferritic and martensitic microstructure which can be altered by heat treating and chemical composition variations. Fully martensitic steels typically having high yield strengths but low ductility. Tempering can reduce the amount of martensite in the steel lowering the yield strength but increasing the ductility of the alloy. Alloying can alter the time required for a martensitic transformation. In authors' previously published research, the authors used machine learning methodology to predict room temperature tensile properties from scanning electron microscopy (SEM) images of the initial steel microstructures from a wide range of steel compositions. This data-in-brief supplies the raw image files and the associated tensile properties for the authors' previously published research utilized to predict tensile properties of steels [1].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...