Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 328: 121922, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423379

RESUMEN

AIMS: Brown adipose tissue (BAT) can produce heat by metabolizing glucose and fatty acids. Activation of BAT is controlled by the central nervous system (CNS) through sympathetic innervation. Dysregulation of signalling molecules in selective CNS areas such as the nucleus of tractus solitarius (NTS) are linked with altered BAT activity, obesity and diabetes. High-fat diet (HFD)-feeding increases mitochondrial fragmentation in the NTS, triggering insulin resistance, hyperphagia and weight gain. Here we sought to determine whether changes in mitochondrial dynamics in the NTS can affect BAT glucose uptake. MAIN METHODS: Rats received DVC stereotactic surgery for local brain administration of viruses that express mutated Drp1 genes. BAT glucose uptake was measured with PET/CT scans. Biochemical assays and immunohistochemistry determined altered levels of key signalling molecules and neural innervation of BAT. KEY FINDINGS: We show that short-term HFD-feeding decreases BAT glucose uptake. However, inhibiting mitochondrial fragmentation in NTS-astrocytes of HFD-fed rats partially restores BAT glucose uptake accompanied by lower blood glucose and insulin levels. Tyrosine Hydroxylase (TH) revealed that rats with inhibited mitochondrial fragmentation in NTS astrocytes had higher levels of catecholaminergic innervation in BAT compared to HFD-fed rats, and did not exhibit HFD-dependent infiltration of enlarged white fat droplets in the BAT. In regular chow-fed rats, increasing mitochondrial fragmentation in the NTS-astrocytes reduced BAT glucose uptake, TH immune-positive boutons and ß3-adrenergic receptor levels. SIGNIFICANCE: Our data suggest that targeting mitochondrial dynamics in the NTS-astrocytes could be a beneficial strategy to increase glucose utilization and protect from developing obesity and diabetes.


Asunto(s)
Tejido Adiposo Pardo , Núcleo Solitario , Ratas , Animales , Dinámicas Mitocondriales , Tomografía Computarizada por Tomografía de Emisión de Positrones , Obesidad , Glucosa , Dieta Alta en Grasa/efectos adversos
2.
Nat Commun ; 14(1): 2833, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198197

RESUMEN

Amyloid plaques composed of Aß fibrils are a hallmark of Alzheimer's disease (AD). However, the molecular architecture of amyloid plaques in the context of fresh mammalian brain tissue is unknown. Here, using cryogenic correlated light and electron tomography we report the in situ molecular architecture of Aß fibrils in the AppNL-G-F familial AD mouse model containing the Arctic mutation and an atomic model of ex vivo purified Arctic Aß fibrils. We show that in-tissue Aß fibrils are arranged in a lattice or parallel bundles, and are interdigitated by subcellular compartments, extracellular vesicles, extracellular droplets and extracellular multilamellar bodies. The Arctic Aß fibril differs significantly from an earlier AppNL-F fibril structure, indicating a striking effect of the Arctic mutation. These structural data also revealed an ensemble of additional fibrillar species, including thin protofilament-like rods and branched fibrils. Together, these results provide a structural model for the dense network architecture that characterises ß-amyloid plaque pathology.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/patología , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Mutación , Mamíferos/metabolismo
3.
iScience ; 26(1): 105914, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36691620

RESUMEN

The action potential and its all-or-none nature is fundamental to neural communication. Canonically, the action potential is initiated once voltage-activated Na+ channels are activated, and their rapid kinetics of activation and inactivation give rise to the action potential's all-or-none nature. Here we demonstrate that cerebrospinal fluid contacting neurons (CSFcNs) surrounding the central canal of the mouse spinal cord employ a different strategy. Rather than using voltage-activated Na+ channels to generate binary spikes, CSFcNs use two different types of voltage-activated Ca2+ channel, enabling spikes of different amplitude. T-type Ca2+ channels generate small amplitude spikes, whereas larger amplitude spikes require high voltage-activated Cd2+-sensitive Ca2+ channels. We demonstrate that these different amplitude spikes can signal input from different transmitter systems; purinergic inputs evoke smaller T-type dependent spikes whereas cholinergic inputs evoke larger spikes that do not rely on T-type channels. Different synaptic inputs to CSFcNs can therefore be signaled by the spike amplitude.

4.
Neuropharmacology ; 223: 109326, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36336067

RESUMEN

Manipulation of neural stem cell proliferation and differentiation in the postnatal CNS is receiving significant attention due to therapeutic potential. In the spinal cord, such manipulations may promote repair in conditions such as multiple sclerosis or spinal cord injury, but may also limit excessive cell proliferation contributing to tumours such as ependymomas. We show that when ambient γ-aminobutyric acid (GABA) is increased in vigabatrin-treated or decreased by GAD67 allele haplodeficiency in glutamic acid decarboxylase67-green fluorescent protein (GAD67-GFP) mice of either sex, the numbers of proliferating cells respectively decreased or increased. Thus, intrinsic spinal cord GABA levels are correlated with the extent of cell proliferation, providing important evidence for manipulating these levels. Diazepam binding inhibitor, an endogenous protein that interacts with GABA receptors and its breakdown product, octadecaneuropeptide, which preferentially activates central benzodiazepine (CBR) sites, were highly expressed in spinal cord, especially in ependymal cells surrounding the central canal. Furthermore, animals with reduced CBR activation via treatment with flumazenil or Ro15-4513, or with a G2F77I mutation in the CBR binding site had greater numbers of Ethynyl-2'-deoxyuridine positive cells compared to control, which maintained their stem cell status since the proportion of newly proliferated cells becoming oligodendrocytes or astrocytes was significantly lower. Altering endogenous GABA levels or modulating GABAergic signalling through specific sites on GABA receptors therefore influences NSC proliferation in the adult spinal cord. These findings provide a basis for further study into how GABAergic signalling could be manipulated to enable spinal cord self-regeneration and recovery or limit pathological proliferative activity.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Ratones , Animales , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Células-Madre Neurales/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Proliferación Celular/fisiología , Receptores de GABA/metabolismo
5.
Neuromodulation ; 26(1): 192-205, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35088730

RESUMEN

OBJECTIVES: Failed back surgery syndrome (FBSS) is associated with impaired autonomic tone, characterized by sympathetic prevalence and vagal withdrawal. Although spinal cord stimulation (SCS) alleviates pain in FBSS, there is limited research investigating how SCS affects measures of autonomic function. This was a prospective, open-label, feasibility study exploring measures of autonomic function in patients with FBSS receiving SCS therapy. MATERIALS AND METHODS: A total of 14 patients with FBSS were recruited for baseline measurements and underwent a trial of 10-kHz SCS. There were three failed trials, resulting in the remaining 11 participants receiving a fully implanted 10-kHz SCS system. One participant requested an explant, resulting in ten participants completing both baseline and follow-up (three to six months after SCS implant) measurements. Autonomic function was assessed using time- and frequency-domain heart rate variability (HRV), baroreceptor reflex sensitivity (BRS), and muscle sympathetic nerve activity (MSNA) using microneurography. Because this was a feasibility study, most of the analysis was descriptive. However, paired t-tests and Wilcoxon signed-rank tests tested for differences between baseline and follow-up. RESULTS: In the whole (N = 14) and final (N = 10) samples, there was between-participant variation in baseline and follow-up measures. This, combined with a small sample, likely contributed to finding no statistically significant differences in any of the measures between baseline and follow-up. However, plotting baseline and follow-up scores for individual participants revealed that those who showed increases in MSNA frequency, square root of the mean of the squared differences between adjacent RR intervals (RMSSD), percentage of the number of RR intervals >50 ms (pRR50), total power, and up BRS between baseline and follow-up had distinct clustering of baseline values compared with those who showed decreases in these measures. CONCLUSIONS: Findings from this feasibility study will aid with informing hypotheses for future research. A key aspect that should be considered in future research concerns exploring the role of baseline measures of autonomic function in influencing change in autonomic function with SCS therapy.


Asunto(s)
Síndrome de Fracaso de la Cirugía Espinal Lumbar , Estimulación de la Médula Espinal , Humanos , Estimulación de la Médula Espinal/métodos , Síndrome de Fracaso de la Cirugía Espinal Lumbar/terapia , Estudios Prospectivos , Estudios de Factibilidad , Médula Espinal , Resultado del Tratamiento
6.
eNeuro ; 9(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35058310

RESUMEN

Autonomic parasympathetic preganglionic neurons (PGNs) drive contraction of the bladder during micturition but remain quiescent during bladder filling. This quiescence is postulated to be because of recurrent inhibition of PGN by fast-firing adjoining interneurons. Here, we defined four distinct neuronal types within Lamina VII, where PGN are situated, by combining whole cell patch clamp recordings with k-means clustering of a range of electrophysiological parameters. Additional morphologic analysis separated these neuronal classes into parasympathetic preganglionic populations (PGN) and a fast-firing interneuronal population. Kv3 channels are voltage-gated potassium channels (Kv) that allow fast and precise firing of neurons. We found that blockade of Kv3 channels by tetraethylammonium (TEA) reduced neuronal firing frequency and isolated high-voltage-activated Kv currents in the fast-firing population but had no effect in PGN populations. Furthermore, Kv3 blockade potentiated the local and descending inhibitory inputs to PGN indicating that Kv3-expressing inhibitory neurons are synaptically connected to PGN. Taken together, our data reveal that Kv3 channels are crucial for fast and regulated neuronal output of a defined population that may be involved in intrinsic spinal bladder circuits that underpin recurrent inhibition of PGN.


Asunto(s)
Neuronas , Canales de Potasio Shaw , Potenciales de Acción/fisiología , Neuronas/fisiología , Técnicas de Placa-Clamp , Médula Espinal/fisiología
7.
Front Neurosci ; 14: 906, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013299

RESUMEN

BACKGROUND: Myocardial infarction (MI) reperfusion therapy causes paradoxical cardiac complications. Following restoration of blood flow to infarcted regions, a multitude of inflammatory cells are recruited to the site of injury for tissue repair. Continual progression of cardiac inflammatory responses does, however, lead to adverse cardiac remodeling, inevitably causing heart failure. MAIN BODY: Increasing evidence of the cardioprotective effects of both invasive and non-invasive vagal nerve stimulation (VNS) suggests that these may be feasible methods to treat myocardial ischemia/reperfusion injury via anti-inflammatory regulation. The mechanisms through which auricular VNS controls inflammation are yet to be explored. In this review, we discuss the potential of autonomic nervous system modulation, particularly via the parasympathetic branch, in ameliorating MI. Novel insights are provided about the activation of the cholinergic anti-inflammatory pathway on cardiac macrophages. Acetylcholine binding to the α7 nicotinic acetylcholine receptor (α7nAChR) expressed on macrophages polarizes the pro-inflammatory into anti-inflammatory subtypes. Activation of the α7nAChR stimulates the signal transducer and activator of transcription 3 (STAT3) signaling pathway. This inhibits the secretion of pro-inflammatory cytokines, limiting ischemic injury in the myocardium and initiating efficient reparative mechanisms. We highlight recent developments in the controversial auricular vagal neuro-circuitry and how they may relate to activation of the cholinergic anti-inflammatory pathway. CONCLUSION: Emerging published data suggest that auricular VNS is an inexpensive healthcare modality, mediating the dynamic balance between pro- and anti-inflammatory responses in cardiac macrophages and ameliorating cardiac ischemia/reperfusion injury.

8.
Chem Commun (Camb) ; 56(45): 6098-6101, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32355935

RESUMEN

Tracing of neurons plays an essential role in elucidating neural networks in the brain and spinal cord. Cholera toxin B subunit (CTB) is already widely used as a tracer although its use is limited by the need for immunohistochemical detection. A new construct incorporating non-canonical azido amino acids (azido-CTB) offers a novel way to expand the range and flexibility of this neuronal tracer. Azido-CTB can be detected rapidly in vivo following intramuscular tongue injection by 'click' chemistry, eliminating the need for antibodies. Cadmium selenide/zinc sulfide (CdSe/ZnS) core/shell nanoparticles were attached to azido-CTB by strain-promoted alkyne-azide cycloaddition to make a nano-conjugate. Following tongue injections the complex was detected in vivo in the brainstem by light microscopy and electron microscopy via silver enhancement. This method does not require membrane permeabilization and so ultrastructure is maintained. Azido-CTB offers new possibilities to enhance the utility of CTB as a neuronal tracer and delivery vehicle by modification using 'click' chemistry.


Asunto(s)
Azidas/administración & dosificación , Compuestos de Cadmio/administración & dosificación , Toxina del Cólera/administración & dosificación , Neuronas Motoras/metabolismo , Nanopartículas/administración & dosificación , Compuestos de Selenio/administración & dosificación , Sulfuros/administración & dosificación , Compuestos de Zinc/administración & dosificación , Animales , Azidas/química , Tronco Encefálico/metabolismo , Compuestos de Cadmio/química , Toxina del Cólera/química , Ratones , Nanopartículas/química , Compuestos de Selenio/química , Sulfuros/química , Compuestos de Zinc/química
9.
Aging (Albany NY) ; 11(14): 4836-4857, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31358702

RESUMEN

Ageing is associated with attenuated autonomic function. Transcutaneous vagal nerve stimulation (tVNS) improved autonomic function in healthy young participants. We therefore investigated the effects of a single session of tVNS (studies 1 and 2) and tVNS administered daily for two weeks (study 3) in volunteers aged ≥ 55 years. tVNS was performed using modified surface electrodes on the tragus and connected to a transcutaneous electrical nerve stimulation (TENS) machine. Study 1: participants (n=14) received a single session of tVNS and sham. Study 2: all participants (n=51) underwent a single session of tVNS. Study 3: participants (n=29) received daily tVNS for two weeks. Heart rate variability and baroreflex sensitivity were derived. Quality of life (QoL), mood and sleep were assessed in study 3. tVNS promoted increases in measures of vagal tone and was associated with greater increases in baroreflex sensitivity than sham. Two weeks of daily tVNS improved measures of autonomic function, and some aspects of QoL, mood and sleep. Importantly, findings showed that improvements in measures of autonomic balance were more pronounced in participants with greater baseline sympathetic prevalence. This suggests it may be possible to identify individuals who are likely to encounter significant benefits from tVNS.


Asunto(s)
Barorreflejo/fisiología , Frecuencia Cardíaca/fisiología , Estimulación Eléctrica Transcutánea del Nervio/métodos , Estimulación del Nervio Vago/métodos , Afecto , Anciano , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Calidad de Vida , Sueño
12.
Exp Physiol ; 103(3): 326-331, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29205954

RESUMEN

NEW FINDINGS: What is the topic of this review? This review briefly considers what modulates sympathetic nerve activity and how it may change as we age or in pathological conditions. It then focuses on transcutaneous vagus nerve stimulation, a method of neuromodulation in autonomic cardiovascular control. What advances does it highlight? The review considers the pathways involved in eliciting the changes in autonomic balance seen with transcutaneous vagus nerve stimulation in relationship to other neuromodulatory techniques. The autonomic nervous system, consisting of the sympathetic and parasympathetic branches, is a major contributor to the maintenance of cardiovascular variables within homeostatic limits. As we age or in certain pathological conditions, the balance between the two branches changes such that sympathetic activity is more dominant, and this change in dominance is negatively correlated with prognosis in conditions such as heart failure. We have shown that non-invasive stimulation of the tragus of the ear increases parasympathetic activity and reduces sympathetic activity and that the extent of this effect is correlated with the baseline cardiovascular parameters of different subjects. The effects could be attributable to activation of the afferent branch of the vagus and, potentially, other sensory nerves in that region. This indicates that tragus stimulation may be a viable treatment in disorders where autonomic activity to the heart is compromised.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/fisiopatología , Enfermedades Cardiovasculares/fisiopatología , Sistema Nervioso Simpático/fisiología , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Frecuencia Cardíaca/fisiología , Humanos , Sistema Nervioso Simpático/fisiopatología
13.
FASEB J ; 31(9): 3966-3977, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28533325

RESUMEN

Chronically elevated sympathetic nervous activity underlies many cardiovascular diseases. Elucidating the mechanisms contributing to sympathetic nervous system output may reveal new avenues of treatment. The contribution of the gap junctional protein connexin 36 (Cx36) to the regulation of sympathetic activity and thus blood pressure and heart rate was determined using a mouse with specific genetic deletion of Cx36. Ablation of the Cx36 protein was confirmed in sympathetic preganglionic neurons of Cx36-knockout (KO) mice. Telemetric analysis from conscious Cx36 KO mice revealed higher variance in heart rate and blood pressure during rest and activity compared to wild-type (WT) mice, and smaller responses to chemoreceptor activation when anesthetized. In the working heart-brain stem preparation of the Cx36-KO mouse, respiratory-coupled sympathetic nerve discharge was attenuated and responses to chemoreceptor stimulation and noxious stimulation were blunted compared to WT mice. Using whole cell patch recordings, sympathetic preganglionic neurons in spinal cord slices of Cx36-KO mice displayed lower levels of spikelet activity compared to WT mice, indicating reduced gap junction coupling between neurons. Cx36 deletion therefore disrupts normal regulation of sympathetic outflow with effects on cardiovascular parameters.-Lall, V. K., Bruce, G., Voytenko, L., Drinkhill, M., Wellershaus, K., Willecke, K., Deuchars, J., Deuchars, S. A. Physiologic regulation of heart rate and blood pressure involves connexin 36-containing gap junctions.


Asunto(s)
Presión Sanguínea/fisiología , Conexinas/metabolismo , Uniones Comunicantes/fisiología , Frecuencia Cardíaca/fisiología , Animales , Células Quimiorreceptoras/efectos de los fármacos , Conexinas/genética , Fenómenos Electrofisiológicos , Femenino , Masculino , Ratones , Ratones Noqueados , Cianuro de Sodio/farmacología , Sistema Nervioso Simpático/fisiología , Proteína delta-6 de Union Comunicante
14.
Brain Res ; 1646: 570-579, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27378584

RESUMEN

Lamina X of the spinal cord is a functionally diverse area with roles in locomotion, autonomic control and processing of mechano and nociceptive information. It is also a neurochemically diverse region. However, the different populations of cells in lamina X remain to be fully characterised. To determine the co-localisation of the enzymes responsible for the production of GABA and acetylcholine (which play major roles in the spinal cord) in lamina X of the adult and juvenile mouse, we used a transgenic mouse expressing green fluorescent protein (GFP) in glutamate decarboxylase 67 (GAD67) neurons, combined with choline acetyltransferase (ChAT) immunohistochemistry. ChAT-immunoreactive (IR) and GAD67-GFP containing neurons were observed in lamina X of both adult and juvenile mice and in both age groups a population of cells containing both ChAT-IR and GAD67-GFP were observed in lumbar, thoracic and cervical spinal cord. Such dual labelled cells were predominantly located ventral to the central canal. Immunohistochemistry for vesicular acetylcholine transporter (VAChT) and GAD67 revealed a small number of double labelled terminals located lateral, dorsolateral and ventrolateral to the central canal. This study therefore describes in detail a population of ChAT-IR/GAD67-GFP neurons predominantly ventral to the central canal of the cervical, thoracic and lumbar spinal cord of adult and juvenile mice. These cells potentially correspond to a sub-population of the cholinergic central canal cluster cells which may play a unique role in controlling spinal cord circuitry.


Asunto(s)
Colina O-Acetiltransferasa/metabolismo , Glutamato Descarboxilasa/metabolismo , Neuronas/enzimología , Asta Dorsal de la Médula Espinal/enzimología , Acetilcolina/metabolismo , Animales , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ácido gamma-Aminobutírico/metabolismo
15.
Auton Neurosci ; 199: 48-53, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27388046

RESUMEN

The human ear seems an unlikely candidate for therapies aimed at improving cardiac function, but the ear and the heart share a common connection: the vagus nerve. In recent years there has been increasing interest in the auricular branch of the vagus nerve (ABVN), a unique cutaneous subdivision of the vagus distributed to the external ear. Non-invasive electrical stimulation of this nerve through the skin may offer a simple, cost-effective alternative to the established method of vagus nerve stimulation (VNS), which requires a surgical procedure and has generated mixed results in a number of clinical trials for heart failure. This review discusses the available evidence in support of modulating cardiac activity using this strange auricular nerve.


Asunto(s)
Oído/fisiología , Insuficiencia Cardíaca/fisiopatología , Corazón/fisiología , Estimulación del Nervio Vago , Nervio Vago/fisiología , Animales , Oído/cirugía , Estimulación Eléctrica/métodos , Corazón/fisiopatología , Insuficiencia Cardíaca/cirugía , Humanos , Nervio Vago/fisiopatología , Estimulación del Nervio Vago/economía , Estimulación del Nervio Vago/métodos
16.
Stem Cells ; 33(9): 2864-76, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26038197

RESUMEN

The region surrounding the central canal (CC) of the spinal cord is a highly plastic area, defined as a postnatal neurogenic niche. Within this region are ependymal cells that can proliferate and differentiate to form new astrocytes and oligodendrocytes following injury and cerebrospinal fluid contacting cells (CSFcCs). The specific environmental conditions, including the modulation by neurotransmitters that influence these cells and their ability to proliferate, are unknown. Here, we show that acetylcholine promotes the proliferation of ependymal cells in mice under both in vitro and in vivo conditions. Using whole cell patch clamp in acute spinal cord slices, acetylcholine directly depolarized ependymal cells and CSFcCs. Antagonism by specific nicotinic acetylcholine receptor (nAChR) antagonists or potentiation by the α7 containing nAChR (α7*nAChR) modulator PNU 120596 revealed that both α7*nAChRs and non-α7*nAChRs mediated the cholinergic responses. Using the nucleoside analogue EdU (5-ethynyl-2'-deoxyuridine) as a marker of cell proliferation, application of α7*nAChR modulators in spinal cord cultures or in vivo induced proliferation in the CC region, producing Sox-2 expressing ependymal cells. Proliferation also increased in the white and grey matter. PNU 120596 administration also increased the proportion of cells coexpressing oligodendrocyte markers. Thus, variation in the availability of acetylcholine can modulate the rate of proliferation of cells in the ependymal cell layer and white and grey matter through α7*nAChRs. This study highlights the need for further investigation into how neurotransmitters regulate the response of the spinal cord to injury or during aging.


Asunto(s)
Proliferación Celular/fisiología , Neuronas/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Colinérgicos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/agonistas
17.
Auton Neurosci ; 193: 22-30, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26015156

RESUMEN

GABAergic and cholinergic systems play an important part in autonomic pathways. To determine the distribution of the enzymes responsible for the production of GABA and acetylcholine in areas involved in autonomic control in the mouse brainstem, we used a transgenic mouse expressing green fluorescent protein (GFP) in glutamate decarboxylase 67 (GAD67) neurones, combined with choline acetyl transferase (ChAT) immunohistochemistry. ChAT-immunoreactive (IR) and GAD67-GFP containing neurones were observed throughout the brainstem. A small number of cells contained both ChAT-IR and GAD67-GFP. Such double labelled cells were observed in the NTS (predominantly in the intermediate and central subnuclei), the area postrema, reticular formation and lateral paragigantocellular nucleus. All ChAT-IR neurones in the area postrema contained GAD67-GFP. Double labelled neurones were not observed in the dorsal vagal motor nucleus, nucleus ambiguus or hypoglossal nucleus. Double labelled ChAT-IR/GAD67-GFP cells in the NTS did not contain neuronal nitric oxide synthase (nNOS) immunoreactivity, whereas those in the reticular formation and lateral paragigantocellular nucleus did. The function of these small populations of double labelled cells is currently unknown, however their location suggests a potential role in integrating signals involved in oromotor behaviours.


Asunto(s)
Colina O-Acetiltransferasa/metabolismo , Glutamato Descarboxilasa/metabolismo , Bulbo Raquídeo/citología , Bulbo Raquídeo/enzimología , Neuronas/citología , Neuronas/enzimología , Animales , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Ratones Transgénicos , Microscopía Confocal
18.
Compr Physiol ; 5(2): 829-69, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25880515

RESUMEN

The sympathetic nervous system comprises one half of the autonomic nervous system and participates in maintaining homeostasis and enabling organisms to respond in an appropriate manner to perturbations in their environment, either internal or external. The sympathetic preganglionic neurons (SPNs) lie within the spinal cord and their axons traverse the ventral horn to exit in ventral roots where they form synapses onto postganglionic neurons. Thus, these neurons are the last point at which the central nervous system can exert an effect to enable changes in sympathetic outflow. This review considers the degree of complexity of sympathetic control occurring at the level of the spinal cord. The morphology and targets of SPNs illustrate the diversity within this group, as do their diverse intrinsic properties which reveal some functional significance of these properties. SPNs show high degrees of coupled activity, mediated through gap junctions, that enables rapid and coordinated responses; these gap junctions contribute to the rhythmic activity so critical to sympathetic outflow. The main inputs onto SPNs are considered; these comprise afferent, descending, and interneuronal influences that themselves enable functionally appropriate changes in SPN activity. The complexity of inputs is further demonstrated by the plethora of receptors that mediate the different responses in SPNs; their origins and effects are plentiful and diverse. Together these different inputs and the intrinsic and coupled activity of SPNs result in the rhythmic nature of sympathetic outflow from the spinal cord, which has a variety of frequencies that can be altered in different conditions.


Asunto(s)
Fibras Autónomas Preganglionares/fisiología , Generadores de Patrones Centrales/fisiología , Uniones Comunicantes/fisiología , Médula Espinal/fisiología , Sistema Nervioso Simpático/fisiología , Sinapsis/fisiología , Animales , Humanos , Modelos Neurológicos
19.
Exp Physiol ; 100(4): 365-71, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25655449

RESUMEN

NEW FINDINGS: What is the topic of this review? This review focuses on the role of gap junctions and interneurones in sympathetic control at the spinal cord level. What advances does it highlight? The review considers the importance of these local spinal circuits in contributing to rhythmic autonomic activity and enabling appropriate responses to homeostatic perturbations. Sympathetic control of end organs relies on the activity of sympathetic preganglionic neurones (SPNs) within the spinal cord. These SPNs exhibit heterogeneity with respect to function, neurochemistry, location, descending inputs and patterns of activity. Part of this heterogeneity is bestowed by local spinal circuitry. Our understanding of the role of these local circuits, including the significance of connections between the SPNs themselves through specialized gap junctions, is patchy. This report focuses on interneurones and gap junctions within these circuits. Gap junctions play a role in sympathetic control; they are located on SPNs in the intermediolateral cell column. Mefloquine, a chemical that blocks these gap junctions, reduces local rhythmic activity in the spinal cord slice and disrupts autonomic control in the working heart-brainstem preparation. The role that these gap junctions may play in health and disease in adult animals remains to be elucidated fully. Presympathetic interneurones are located in laminae V, VII and X and the intermediolateral cell column; those in lamina X are GABAergic and directly inhibit SPNs. The GABAergic inputs onto SPNs exert their effects through activation of synaptic and extrasynaptic receptors, which stabilize the membrane at negative potentials. The GABAergic interneurones contribute to rhythmic patterns of activity that can be generated in the spinal cord, because bicuculline reduces network oscillatory activity. These studies indicate that local spinal cord circuitry is critical in enabling appropriate levels and patterning of activity in sympathetic outflow. We need to understand how these circuits may be harnessed in the situation of spinal cord injury.


Asunto(s)
Relojes Biológicos/fisiología , Uniones Comunicantes/fisiología , Interneuronas/fisiología , Red Nerviosa/fisiología , Médula Espinal/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Retroalimentación Fisiológica/fisiología , Humanos , Modelos Neurológicos
20.
Brain Stimul ; 7(6): 871-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25164906

RESUMEN

BACKGROUND: Vagus nerve stimulation (VNS) is currently used to treat refractory epilepsy and is being investigated as a potential therapy for a range of conditions, including heart failure, tinnitus, obesity and Alzheimer's disease. However, the invasive nature and expense limits the use of VNS in patient populations and hinders the exploration of the mechanisms involved. OBJECTIVE: We investigated a non-invasive method of VNS through electrical stimulation of the auricular branch of the vagus nerve distributed to the skin of the ear--transcutaneous VNS (tVNS) and measured the autonomic effects. METHODS: The effects of tVNS parameters on autonomic function in 48 healthy participants were investigated using heart rate variability (HRV) and microneurography. tVNS was performed using a transcutaneous electrical nerve stimulation (TENS) machine and modified surface electrodes. Participants visited the laboratory once and received either active (200 µs, 30 Hz; n = 34) or sham (n = 14) stimulation. RESULTS: Active tVNS significantly increased HRV in healthy participants (P = 0.026) indicating a shift in cardiac autonomic function toward parasympathetic predominance. Microneurographic recordings revealed a significant decrease in frequency (P = 0.0001) and incidence (P = 0.0002) of muscle sympathetic nerve activity during tVNS. CONCLUSION: tVNS can increase HRV and reduce sympathetic nerve outflow, which is desirable in conditions characterized by enhanced sympathetic nerve activity, such as heart failure. tVNS can therefore influence human physiology and provide a simple and inexpensive alternative to invasive VNS.


Asunto(s)
Sistema Nervioso Simpático/fisiología , Estimulación Eléctrica Transcutánea del Nervio , Nervio Vago/fisiología , Adulto , Femenino , Voluntarios Sanos , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Persona de Mediana Edad , Frecuencia Respiratoria/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...