Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Am J Epidemiol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918040

RESUMEN

Prenatal exposures to ambient particulate matter (PM2.5) from traffic may generate oxidative stress, and thus contribute to adverse birth outcomes. We investigated whether PM2.5 constituents from brake and tire wear affect levels of oxidative stress biomarkers (malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG)) using urine samples collected up to three times during pregnancy in 156 women recruited from antenatal clinics at the University of California Los Angeles. Land use regression models with co-kriging were employed to estimate average residential outdoor concentrations of black carbon (BC), PM2.5 mass, PM2.5 metal components, and three PM2.5 oxidative potential metrics during the 4-weeks prior to urine sample collection. 8-OHdG concentrations in mid-pregnancy increased by 24.8% (95% CI: 9.0, 42.8) and 14.3% (95% CI: 0.4%, 30.0%) per interquartile range (IQR) increase in PM2.5 mass and BC, respectively. The brake wear marker (barium) and the oxidative potential metrics were associated with increased MDA concentration in the 1st sample collected (10-17 gestational week), but 95% CIs included the null. Traffic-related air pollution contributed in early to mid-pregnancy to oxidative stress generation previously linked to adverse birth outcomes.

2.
Res Sq ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562764

RESUMEN

Background: Polycyclic aromatic hydrocarbons (PAHs) have been linked to adverse birth outcomes, but few epidemiological studies to date have evaluated associations between urinary PAH metabolites and oxidative stress biomarkers in pregnancy. Methods: We measured a total of 7 PAH metabolites and 2 oxidative stress biomarkers (malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG)) in urine samples collected up to three times during pregnancy in 159 women enrolled at antenatal clinics at the University of California Los Angeles during 2016-2019. Using multiple linear regression models, we estimated the percentage change (%) and 95% confidence interval (CI) in 8-OHdG and MDA measured at each sample collection time per doubling of PAH metabolite concentrations. Results: Most PAH metabolites were positively associated with both urinary oxidative stress biomarkers, MDA and 8-OHdG, with stronger associations in early and late pregnancy. Women pregnant with male fetuses exhibited slightly larger increases in both MDA and 8-OHdG in association with PAH exposures in early and late pregnancy. Conclusion: Urinary OH-PAH biomarkers are associated with increases in oxidative stress during pregnancy, especially in early and late pregnancy. Sex differences in associations between PAH exposures and oxidative stress need to be further explored in the future.

3.
Front Neurosci ; 18: 1363094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576870

RESUMEN

Introduction: Serotonin (5-HT) is critical for neurodevelopment and the serotonin transporter (SERT) modulates serotonin levels. Perturbed prenatal and postnatal dietary exposures affect the developing offspring predisposing to neurobehavioral disorders in the adult. We hypothesized that the postnatal brain 5-HT-SERT imbalance associated with gut dysbiosis forms the contributing gut-brain axis dependent mechanism responsible for such ultimate phenotypes. Methods: Employing maternal diet restricted (IUGR, n=8) and high fat+high fructose (HFhf, n=6) dietary modifications, rodent brain serotonin was assessed temporally by ELISA and SERT by quantitative Western blot analysis. Simultaneously, colonic microbiome studies were performed. Results: At early postnatal (P) day 2 no changes in the IUGR, but a ~24% reduction in serotonin (p = 0.00005) in the HFhf group occurred, particularly in the males (p = 0.000007) revealing a male versus female difference (p = 0.006). No such changes in SERT concentrations emerged. At late P21 the IUGR group reared on HFhf (IUGR/HFhf, (n = 4) diet revealed increased serotonin by ~53% in males (p = 0.0001) and 36% in females (p = 0.023). While only females demonstrated a ~40% decrease in serotonin (p = 0.010), the males only trended lower without a significant change within the HFhf group (p = 0.146). SERT on the other hand was no different in HFhf or IUGR/RC, with only the female IUGR/HFhf revealing a 28% decrease (p = 0.036). In colonic microbiome studies, serotonin-producing Bacteriodes increased with decreased Lactobacillus at P2, while the serotonin-producing Streptococcus species increased in IUGR/HFhf at P21. Sex-specific changes emerged in association with brain serotonin or SERT in the case of Alistipase, Anaeroplasma, Blautia, Doria, Lactococcus, Proteus, and Roseburia genera. Discussion: We conclude that an imbalanced 5-HT-SERT axis during postnatal brain development is sex-specific and induced by maternal dietary modifications related to postnatal gut dysbiosis. We speculate that these early changes albeit transient may permanently alter critical neural maturational processes affecting circuitry formation, thereby perturbing the neuropsychiatric equipoise.

4.
J Perinatol ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594412

RESUMEN

Medicaid supports 41% of all births in the US and nearly 347,580 admissions to neonatal intensive care units in 2022. Medicaid reimbursement is critical to child health inclusive of departments of Pediatrics and children's hospitals. Low Medicaid reimbursement is one of the causes for low pediatric subspecialist salaries and has led to workforce challenges. The National Academies of Science, Engineering, and Medicine (NASEM) recently suggested increased Medicaid reimbursement as a strategy to sustain pediatric subspecialist workforce. This review article briefly outlines the importance of Medicaid reimbursement to Neonatal-Perinatal Medicine and its role in providing coverage for preterm births. We also highlight the recommendations of NASEM pertaining to reimbursement that are relevant to neonatal care and its impact on providers, patients, and families. It is imperative that neonatologists join the rest of pediatric subspecialists in lending their support to demonstrate unity in ensuring success in the implementation of the NASEM recommendations.

6.
Placenta ; 145: 72-79, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38100961

RESUMEN

INTRODUCTION: Epidemiological studies have linked prenatal maternal diet to fetal growth, but whether diet affects placental outcomes is poorly understood. METHODS: We collected past month dietary intake from 148 women in mid-pregnancy enrolled at University of California Los Angeles (UCLA) antenatal clinics from 2016 to 2019. We employed the food frequency Diet History Questionnaire II and generated the Healthy Eating Index-2015 (HEI-2015), the Alternate Healthy Eating Index for Pregnancy (AHEI-P), and the Alternate Mediterranean Diet (aMED). We conducted T2-weighted magnetic resonance imaging (MRI) in mid-pregnancy (1st during 14-17 and 2nd during 19-24 gestational weeks) to evaluate placental volume (cm3) and we measured placenta weight (g) at delivery. We estimated change and 95 % confidence interval (CI) in placental volume and associations of placenta weight with all dietary index scores and diet items using linear regression models. RESULTS: Placental volume in mid-pregnancy was associated with an 18.9 cm3 (95 % CI 5.1, 32.8) increase per 100 gestational days in women with a higher HEI-2015 (≥median), with stronger results for placentas of male fetuses. We estimated positive associations between placental volume at the 1st and 2nd MRI and higher intake of vegetables, high-fat fish, dairy, and dietary intake of B vitamins. A higher aMED (≥median) score was associated with a 40.5 g (95 % CI 8.5, 72.5) increase in placenta weight at delivery, which was mainly related to protein intake. DISCUSSION: Placental growth represented by volume in mid-pregnancy and weight at birth is influenced by the quality and content of the maternal diet.


Asunto(s)
Placenta , Mujeres Embarazadas , Recién Nacido , Animales , Femenino , Embarazo , Humanos , Masculino , Placenta/diagnóstico por imagen , Patrones Dietéticos , Los Angeles/epidemiología , Dieta
7.
J Nutr ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38042349
8.
Placenta ; 140: 90-99, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37549442

RESUMEN

INTRODUCTION: To characterize early-gestation changes in placental structure, perfusion, and oxygenation in the context of ischemic placental disease (IPD) as a composite outcome and in individual sub-groups. METHODS: In a single-center prospective cohort study, 199 women were recruited from antenatal clinics between February 2017 and February 2019. Maternal magnetic resonance imaging (MRI) studies of the placenta were temporally conducted at two timepoints: 14-16 weeks gestational age (GA) and 19-24 weeks GA. The pregnancy was monitored via four additional study visits, including at delivery. Placental volume, perfusion, and oxygenation were assessed at both MRI timepoints. The primary outcome was defined as pregnancy complicated by IPD, with group assignment confirmed after delivery. RESULTS: In early gestation, mothers with IPD who subsequently developed fetal growth restriction (FGR) and/or delivered small-for gestational age (SGA) infants showed significantly decreased MRI indices of placental volume, perfusion, and oxygenation compared to controls. The prediction of FGR or SGA by multiple logistic regression using placental volume, perfusion, and oxygenation revealed receiver operator characteristic curves with areas under the curve of 0.81 (Positive predictive value (PPV) = 0.84, negative predictive value (NPV) = 0.75) at 14-16 weeks GA and 0.66 (PPV = 0.78, NPV = 0.60) at 19-24 weeks GA. DISCUSSION: MRI indices showing decreased placental volume, perfusion and oxygenation in early pregnancy were associated with subsequent onset of IPD, with the greatest deviation evident in subjects with FGR and/or SGA. These early-gestation MRI changes may be predictive of the subsequent development of FGR and/or SGA.


Asunto(s)
Enfermedades Placentarias , Placenta , Recién Nacido , Embarazo , Femenino , Humanos , Lactante , Placenta/diagnóstico por imagen , Estudios Prospectivos , Recién Nacido Pequeño para la Edad Gestacional , Retardo del Crecimiento Fetal/diagnóstico por imagen , Retardo del Crecimiento Fetal/etiología , Enfermedades Placentarias/diagnóstico por imagen
10.
J Magn Reson Imaging ; 57(5): 1533-1540, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37021577

RESUMEN

BACKGROUND: Automated segmentation of the placenta by MRI in early pregnancy may help predict normal and aberrant placenta function, which could improve the efficiency of placental assessment and the prediction of pregnancy outcomes. An automated segmentation method that works at one gestational age may not transfer effectively to other gestational ages. PURPOSE: To evaluate a spatial attentive deep learning method (SADL) for automated placental segmentation on longitudinal placental MRI scans. STUDY TYPE: Prospective, single-center. SUBJECTS: A total of 154 pregnant women who underwent MRI scans at both 14-18 weeks of gestation and at 19-24 weeks of gestation, divided into training (N = 108), validation (N = 15), and independent testing datasets (N = 31). FIELD STRENGTH/SEQUENCE: A 3 T, T2-weighted half Fourier single-shot turbo spin-echo (T2-HASTE) sequence. ASSESSMENT: The reference standard of placental segmentation was manual delineation on T2-HASTE by a third-year neonatology clinical fellow (B.L.) under the supervision of an experienced maternal-fetal medicine specialist (C.J. with 20 years of experience) and an MRI scientist (K.S. with 19 years of experience). STATISTICAL TESTS: The three-dimensional Dice similarity coefficient (DSC) was used to measure the automated segmentation performance compared to the manual placental segmentation. A paired t-test was used to compare the DSCs between SADL and U-Net methods. A Bland-Altman plot was used to analyze the agreement between manual and automated placental volume measurements. A P value < 0.05 was considered statistically significant. RESULTS: In the testing dataset, SADL achieved average DSCs of 0.83 ± 0.06 and 0.84 ± 0.05 in the first and second MRI, which were significantly higher than those achieved by U-Net (0.77 ± 0.08 and 0.76 ± 0.10, respectively). A total of 6 out of 62 MRI scans (9.6%) had volume measurement differences between the SADL-based automated and manual volume measurements that were out of 95% limits of agreement. DATA CONCLUSIONS: SADL can automatically detect and segment the placenta with high performance in MRI at two different gestational ages. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Aprendizaje Profundo , Humanos , Femenino , Embarazo , Procesamiento de Imagen Asistido por Computador/métodos , Placenta , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos
11.
J Nutr ; 153(1): 120-130, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36913445

RESUMEN

BACKGROUND: Growth failure (GF) is a multifactorial problem in preterm infants. The intestinal microbiome and inflammation may contribute to GF. OBJECTIVES: This study's objective was to compare the gut microbiome and plasma cytokines in preterm infants with and without GF. METHODS: This was a prospective cohort study of infants with birth weights of <1750 g. Infants with a weight or length z-score change from birth to discharge or death that was less than or equal to -0.8 (GF group) were compared with infants without GF [control (CON) group]. The primary outcome was the gut microbiome (at weeks 1-4 of age), assessed by 16S rRNA gene sequencing using Deseq2. Secondary outcomes included inferred metagenomic function and plasma cytokines. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States determined metagenomic function, which was compared using ANOVA. Cytokines were measured by 2-multiplexed immunometric assays and compared using Wilcoxon tests and linear mixed models. RESULTS: GF (n = 14) and CON group (n = 13) had similar median (IQR) birth weight (1380 [780-1578] g vs. 1275 [1013-1580] g) and gestational age (29 [25-31] weeks vs. 30 [29-32] weeks). Compared with the CON group, the GF group had a greater abundance of Escherichia/Shigella in weeks 2 and 3, Staphylococcus in week 4, and Veillonella in weeks 3 and 4 (P-adjusted < 0.001 for all). Plasma cytokine concentrations did not differ significantly between the cohorts. When all time points are combined, fewer microbes were involved in TCA cycle activity in the GF group compared with the CON group (P = 0.023). CONCLUSIONS: In this study, when compared with CON infants, GF infants had a distinct microbial signature with increased Escherichia/Shigella and Firmicutes and fewer microbes associated with energy production at later weeks of hospitalization. These findings may suggest a mechanism for aberrant growth.


Asunto(s)
Microbioma Gastrointestinal , Recien Nacido Prematuro , Lactante , Humanos , Recién Nacido , Microbioma Gastrointestinal/genética , Citocinas/genética , Estudios Prospectivos , ARN Ribosómico 16S/genética , Filogenia , Peso al Nacer
12.
Nutrients ; 15(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36615874

RESUMEN

Intra-Uterine Growth Restriction (IUGR) is a risk factor for many adult-onset chronic diseases, such as diabetes and obesity. These diseases are associated with intestinal microbiome perturbations (dysbiosis). The establishment of an intestinal microbiome begins in utero and continues postnatally (PN). Hypercaloric diet-induced dysbiosis is a major driver of childhood obesity. We hypothesized that different postnatal diets superimposed on IUGR will alter the postnatal intestinal microbiome. We compared four experimental rat groups: (1) Ad lib fed regular chow diet pre- and postnatally (CON), (2-3) IUGR induced by maternal caloric restriction prenatally followed postnatally (PN) by either (2) the control diet (IUGR-RC) or (3) High-Fat-high-fructose (IUGR-HFhf) diet, and lastly (4) HFhf ad lib pre- and postnatally (HFhf). Fecal samples were collected from dams and male and female rat offspring at postnatal day 2, 21, and adult day 180 for 16S rRNA gene sequencing. Maternal diet induced IUGR led to dysbiosis of the intestinal microbiome at PN21. Postnatal HFhf diet significantly reduced microbial diversity and worsened dysbiosis reflected by an increased Gammaproteobacteria/Clostridia ratio. Dysbiosis arising from a mismatch between IUGR and a postnatal HFhf diet may contribute to increased risk of the IUGR offspring for subsequent detrimental health problems.


Asunto(s)
Microbioma Gastrointestinal , Obesidad Infantil , Niño , Humanos , Animales , Ratas , Masculino , Femenino , Disbiosis/complicaciones , ARN Ribosómico 16S/genética , Obesidad Infantil/complicaciones , Retardo del Crecimiento Fetal/etiología , Dieta , Dieta Alta en Grasa/efectos adversos
13.
J Clin Endocrinol Metab ; 108(2): 281-294, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36251771

RESUMEN

CONTEXT: Gestational diabetes (GDM) imposes long-term adverse health effects on the mother and fetus. The role of magnetic resonance imaging (MRI) during early gestation in GDM has not been well-studied. OBJECTIVE: To investigate the role of quantitative MRI measurements of placental volume and perfusion, with distribution of maternal adiposity, during early gestation in GDM. METHODS: At UCLA outpatient antenatal obstetrics clinics, ∼200 pregnant women recruited in the first trimester were followed temporally through pregnancy until parturition. Two placental MRI scans were prospectively performed at 14 to 16 weeks and 19 to 24 weeks gestational age (GA). Placental volume and blood flow (PBF) were calculated from placental regions of interest; maternal adiposity distribution was assessed by subcutaneous fat area ratio (SFAR) and visceral fat area ratio (VFAR). Statistical comparisons were performed using the two-tailed t test. Predictive logistic regression modeling was evaluated by area under the curve (AUC). RESULTS: Of a total 186 subjects, 21 subjects (11.3%) developed GDM. VFAR was higher in GDM vs the control group, at both time points (P < 0.001 each). Placental volume was greater in GDM vs the control group at 19 to 24 weeks GA (P = 0.01). Combining VFAR, placental volume and perfusion, improved the AUC to 0.83 at 14 to 16 weeks (positive predictive value [PPV] = 0.77, negative predictive value [NPV] = 0.83), and 0.81 at 19 to 24 weeks GA (PPV = 0.73, NPV = 0.86). CONCLUSION: A combination of MRI-based placental volume, perfusion, and visceral adiposity during early pregnancy demonstrates significant changes in GDM and provides a proof of concept for predicting the subsequent development of GDM.


Asunto(s)
Diabetes Gestacional , Embarazo , Femenino , Humanos , Placenta/patología , Primer Trimestre del Embarazo , Imagen por Resonancia Magnética , Parto
14.
Acad Med ; 98(3): 322-328, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36512839

RESUMEN

University of California Health (UCH) provided a system-wide, rapid response to the humanitarian crisis of unaccompanied children crossing the southern U.S. border in the midst of the COVID-19 pandemic in 2021. In collaboration with multiple federal, state, and local agencies, UCH mobilized a multidisciplinary team to deliver acute general and specialty pediatric care to unaccompanied children at 2 Californian emergency intake sites (EISs). The response, which did not disrupt normal UCH operations, mobilized the capacities of the system and resulted in a safe and developmentally appropriate environment that supported the physical and mental health of migrant children during this traumatic period. The capacities of UCH's 6 academic health centers ensured access to trauma-informed medical care and culturally sensitive psychological and social support. Child life professionals provided access to exercise, play, and entertainment. Overall, 260 physicians, 42 residents and fellows, 4 nurse practitioners participated as treating clinicians and were supported by hundreds of staff across the 2 EISs. Over 5 months and across both EISs, a total of 4,911 children aged 3 to 17 years were cared for. A total of 782 children had COVID-19, most infected before arrival. Most children (3,931) were reunified with family or sponsors. Continuity of care after reunification or placement in a long-term shelter was enhanced by use of an electronic health record. The effort provided an educational experience for residents and fellows with instruction in immigrant health and trauma-informed care. The effort benefitted from UCH's recent experience of providing a system-wide response to the COVID-19 pandemic. Lessons learned are reported to encourage the alignment and integration of academic health centers' capacities with federal, state, and local plans to better prepare for and respond to the accelerating need to care for those in the wake of disasters and humanitarian crises.


Asunto(s)
COVID-19 , Desastres , Salud Única , Sistemas de Socorro , Niño , Humanos , Pandemias
16.
Am J Perinatol ; 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36241211

RESUMEN

OBJECTIVE: The aim of Placental Assessment in Response to Environmental Pollution Study (PARENTs) was to determine whether imaging of the placenta by novel multiparametric magnetic resonance imaging (MRI) techniques in early pregnancy could help predict adverse pregnancy outcomes (APOs) due to ischemic placental disease (IPD). Additionally, we sought to determine maternal characteristics and environmental risk factors that contribute to IPD and secondary APOs. STUDY DESIGN: Potential patients in their first trimester of pregnancy, who agreed to MRI of the placenta and measures of assessment of environmental pollution, were recruited into PARENTs, a prospective population-based cohort study. Participants were seen at three study visits during pregnancy and again at their delivery from 2015 to 2019. We collected data from interviews, chart abstractions, and imaging. Maternal biospecimens (serum, plasma, and urine) at antepartum study visits and delivery specimens (placenta, cord, and maternal blood) were collected, processed, and stored. The primary outcome was a composite of IPD, which included any of the following: placental abruption, hypertensive disease of pregnancy, fetal growth restriction, or a newborn of small for gestational age. RESULTS: In this pilot cohort, of the 190 patients who completed pregnancy to viable delivery, 50 (26%) developed IPD. Among demographic characteristics, having a history of prior IPD in multiparous women was associated with the development of IPD. In the multiple novel perfusion measurements taken of the in vivo placenta using MRI, decreased high placental blood flow (mL/100 g/min) in early pregnancy (between 14 and 16 weeks) was found to be significantly associated with the later development of IPD. CONCLUSION: Successful recruitment of the PARENTs prospective cohort demonstrated the feasibility and acceptability of the use of MRI in human pregnancy to study the placenta in vivo and at the same time collect environmental exposure data. Analysis is ongoing and we hope these methods will assist researchers in the design of prospective imaging studies of pregnancy. KEY POINTS: · MRI was acceptable and feasible for the study of the human placenta in vivo.. · Functional imaging of the placenta by MRI showed a significant decrease in high placental blood flow.. · Measures of environmental exposures are further being analyzed to predict IPD..

18.
Sci Rep ; 12(1): 8438, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589747

RESUMEN

The placenta is a heterogeneous organ whose development involves complex interactions of trophoblasts with decidual, vascular, and immune cells at the fetal-maternal interface. It maintains a critical balance between maternal and fetal homeostasis. Placental dysfunction can lead to adverse pregnancy outcomes including intra-uterine growth restriction, pre-eclampsia, or pre-term birth. Exposure to environmental pollutants contributes to the development of placental abnormalities, with poorly understood molecular underpinning. Here we used a mouse (C57BL/6) model of environmental pollutant exposure by administration of a particulate matter (SRM1649b at 300 µg/day/mouse) suspension intra-nasally beginning 2 months before conception and during gestation, in comparison to saline-exposed controls. Placental transcriptomes, at day 19 of gestation, were determined using bulk RNA-seq from whole placentas of exposed (n = 4) and control (n = 4) animals and scRNAseq of three distinct placental layers, followed by flow cytometry analysis of the placental immune cell landscape. Our results indicate a reduction in vascular placental cells, especially cells responsible for structural integrity, and increase in trophoblast proliferation in animals exposed to particulate matter. Pollution-induced inflammation was also evident, especially in the decidual layer. These data indicate that environmental exposure to air pollutants triggers changes in the placental cellular composition, mediating adverse pregnancy outcomes.


Asunto(s)
Contaminantes Atmosféricos , Enfermedades Placentarias , Contaminantes Atmosféricos/toxicidad , Animales , Decidua , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Material Particulado/toxicidad , Placenta , Embarazo , Trofoblastos
19.
PLoS One ; 17(5): e0267564, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35613088

RESUMEN

We undertook a prospective temporal study collecting blood samples from consenting pregnant women, to test the hypothesis that circulating extracellular vesicles (EVs) carrying specific non-coding microRNA signatures can underlie gestational diabetes mellitus (GDM). To test this hypothesis, miRNA cargo of isolated and characterized EVs revealed contributions from the placenta and differential expression at all three trimesters and at delivery between pregnant and non-pregnant states. Many miRNAs originate from the placental-specific chromosome 19 microRNA cluster (19MC) and chromosome 14 microRNA cluster (14MC). Further a positive correlation emerged between third trimester and at delivery EVs containing miRNAs and those expressed by the corresponding post-parturient placentas (R value = 0.63 to 0.69, p value = 2.2X10-16), in normal and GDM. In addition, distinct differences at all trimesters emerged between women who subsequently developed GDM. Analysis by logistic regression with leave-one-out-cross validation revealed the optimal combination of miRNAs using all the circulating miRNAs (miR-92a-3p, miR-192-5p, miR-451a, miR-122-5p), or using only the differentially expressed miRNAs (has-miR-92a-3p, hsa-miR-92b-3p, hsa-miR-100-5p and hsa-miR-125a-3p) in GDM during the first trimester. As an initial step, both sets of miRNAs demonstrated a predictive probability with an area under the curve of 0.95 to 0.96. These miRNAs targeted genes involved in cell metabolism, proliferation and immune tolerance. In particular genes of the P-I-3-Kinase, FOXO, insulin signaling and glucogenic pathways were targeted, suggestive of placental connectivity with various maternal organs/cells, altering physiology along with pathogenic mechanisms underlying the subsequent development of GDM. We conclude that circulating EVs originating from the placenta with their miRNA cargo communicate and regulate signaling pathways in maternal organs, thereby predetermining development of GDM.


Asunto(s)
Diabetes Gestacional , Vesículas Extracelulares , MicroARNs , Diabetes Gestacional/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Femenino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Placenta/metabolismo , Embarazo , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...