Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37066254

RESUMEN

Barton et al.1 raise several statistical concerns regarding our original analyses2 that highlight the challenge of inferring natural selection using ancient genomic data. We show here that these concerns have limited impact on our original conclusions. Specifically, we recover the same signature of enrichment for high FST values at the immune loci relative to putatively neutral sites after switching the allele frequency estimation method to a maximum likelihood approach, filtering to only consider known human variants, and down-sampling our data to the same mean coverage across sites. Furthermore, using permutations, we show that the rs2549794 variant near ERAP2 continues to emerge as the strongest candidate for selection (p = 1.2×10-5), falling below the Bonferroni-corrected significance threshold recommended by Barton et al. Importantly, the evidence for selection on ERAP2 is further supported by functional data demonstrating the impact of the ERAP2 genotype on the immune response to Y. pestis and by epidemiological data from an independent group showing that the putatively selected allele during the Black Death protects against severe respiratory infection in contemporary populations.

2.
iScience ; 26(3): 106144, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36843848

RESUMEN

Age profiling of archaeological bone assemblages can inform on past animal management practices, but is limited by the fragmentary nature of the fossil record and the lack of universal skeletal markers for age. DNA methylation clocks offer new, albeit challenging, alternatives for estimating the age-at-death of ancient individuals. Here, we take advantage of the availability of a DNA methylation clock based on 31,836 CpG sites and dental age markers in horses to assess age predictions in 84 ancient remains. We evaluate our approach using whole-genome sequencing data and develop a capture assay providing reliable estimates for only a fraction of the cost. We also leverage DNA methylation patterns to assess castration practice in the past. Our work opens for a deeper characterization of past husbandry and ritual practices and holds the potential to reveal age mortality profiles in ancient societies, once extended to human remains.

3.
Nature ; 611(7935): 312-319, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36261521

RESUMEN

Infectious diseases are among the strongest selective pressures driving human evolution1,2. This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis3. This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population4. To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 245 variants that are highly differentiated within the London dataset, four of which were replicated in an independent cohort from Denmark, and represent the strongest candidates for positive selection. The selected allele for one of these variants, rs2549794, is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease.


Asunto(s)
ADN Antiguo , Predisposición Genética a la Enfermedad , Inmunidad , Peste , Selección Genética , Yersinia pestis , Humanos , Aminopeptidasas/genética , Aminopeptidasas/inmunología , Peste/genética , Peste/inmunología , Peste/microbiología , Peste/mortalidad , Yersinia pestis/inmunología , Yersinia pestis/patogenicidad , Selección Genética/inmunología , Europa (Continente)/epidemiología , Europa (Continente)/etnología , Inmunidad/genética , Conjuntos de Datos como Asunto , Londres/epidemiología , Dinamarca/epidemiología
4.
Microb Genom ; 8(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35622897

RESUMEN

Genomic data contribute invaluable information to the epidemiological investigation of pathogens of public health importance. However, whole-genome sequencing (WGS) of bacteria typically relies on culture, which represents a major hurdle for generating such data for a wide range of species for which culture is challenging. In this study, we assessed the use of culture-free target-enrichment sequencing as a method for generating genomic data for two bacterial species: (1) Bacillus anthracis, which causes anthrax in both people and animals and whose culture requires high-level containment facilities; and (2) Mycoplasma amphoriforme, a fastidious emerging human respiratory pathogen. We obtained high-quality genomic data for both species directly from clinical samples, with sufficient coverage (>15×) for confident variant calling over at least 80% of the baited genomes for over two thirds of the samples tested. Higher qPCR cycle threshold (Ct) values (indicative of lower pathogen concentrations in the samples), pooling libraries prior to capture, and lower captured library concentration were all statistically associated with lower capture efficiency. The Ct value had the highest predictive value, explaining 52 % of the variation in capture efficiency. Samples with Ct values ≤30 were over six times more likely to achieve the threshold coverage than those with a Ct > 30. We conclude that target-enrichment sequencing provides a valuable alternative to standard WGS following bacterial culture and creates opportunities for an improved understanding of the epidemiology and evolution of many clinically important pathogens for which culture is challenging.


Asunto(s)
Genómica , Salud Pública , Animales , Bacterias/genética , Humanos , Secuenciación Completa del Genoma/métodos
5.
Environ Microbiol ; 23(12): 7523-7537, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34519156

RESUMEN

Finding, characterizing and monitoring reservoirs for antimicrobial resistance (AMR) is vital to protecting public health. Hybridization capture baits are an accurate, sensitive and cost-effective technique used to enrich and characterize DNA sequences of interest, including antimicrobial resistance genes (ARGs), in complex environmental samples. We demonstrate the continued utility of a set of 19 933 hybridization capture baits designed from the Comprehensive Antibiotic Resistance Database (CARD)v1.1.2 and Pathogenicity Island Database (PAIDB)v2.0, targeting 3565 unique nucleotide sequences that confer resistance. We demonstrate the efficiency of our bait set on a custom-made resistance mock community and complex environmental samples to increase the proportion of on-target reads as much as >200-fold. However, keeping pace with newly discovered ARGs poses a challenge when studying AMR, because novel ARGs are continually being identified and would not be included in bait sets designed prior to discovery. We provide imperative information on how our bait set performs against CARDv3.3.1, as well as a generalizable approach for deciding when and how to update hybridization capture bait sets. This research encapsulates the full life cycle of baits for hybridization capture of the resistome from design and validation (both in silico and in vitro) to utilization and forecasting updates and retirement.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética
6.
Front Microbiol ; 12: 644662, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33986735

RESUMEN

Environmental microbial diversity is often investigated from a molecular perspective using 16S ribosomal RNA (rRNA) gene amplicons and shotgun metagenomics. While amplicon methods are fast, low-cost, and have curated reference databases, they can suffer from amplification bias and are limited in genomic scope. In contrast, shotgun metagenomic methods sample more genomic regions with fewer sequence acquisition biases, but are much more expensive (even with moderate sequencing depth) and computationally challenging. Here, we develop a set of 16S rRNA sequence capture baits that offer a potential middle ground with the advantages from both approaches for investigating microbial communities. These baits cover the diversity of all 16S rRNA sequences available in the Greengenes (v. 13.5) database, with no sequence having <78% sequence identity to at least one bait for all segments of 16S. The use of our baits provide comparable results to 16S amplicon libraries and shotgun metagenomic libraries when assigning taxonomic units from 16S sequences within the metagenomic reads. We demonstrate that 16S rRNA capture baits can be used on a range of microbial samples (i.e., mock communities and rodent fecal samples) to increase the proportion of 16S rRNA sequences (average > 400-fold) and decrease analysis time to obtain consistent community assessments. Furthermore, our study reveals that bioinformatic methods used to analyze sequencing data may have a greater influence on estimates of community composition than library preparation method used, likely due in part to the extent and curation of the reference databases considered. Thus, enriching existing aliquots of shotgun metagenomic libraries and obtaining modest numbers of reads from them offers an efficient orthogonal method for assessment of bacterial community composition.

7.
Am J Phys Anthropol ; 169(2): 240-252, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30964548

RESUMEN

OBJECTIVES: In the 14th century AD, medieval Europe was severely affected by the Great European Famine as well as repeated bouts of disease, including the Black Death, causing major demographic shifts. This high volatility led to increased mobility and migration due to new labor and economic opportunities, as evidenced by documentary and stable isotope data. This study uses ancient DNA (aDNA) isolated from skeletal remains to examine whether evidence for large-scale population movement can be gleaned from the complete mitochondrial genomes of 264 medieval individuals from England (London) and Denmark. MATERIALS AND METHODS: Using a novel library-conserving approach to targeted capture, we recovered 264 full mitochondrial genomes from the petrous portion of the temporal bones and teeth and compared genetic diversity across the medieval period within and between English (London) and Danish populations and with contemporary populations through population pairwise ΦST analysis. RESULTS: We find no evidence of significant differences in genetic diversity spatially or temporally in our dataset, yet there is a high degree of haplotype diversity in our medieval samples with little exact sequence sharing. DISCUSSION: The mitochondrial genomes of both medieval Londoners and medieval Danes suggest high mitochondrial diversity before, during and after the Black Death. While our mitochondrial genomic data lack geographically correlated signals, these data could be the result of high, continual female migration before and after the Black Death or may simply indicate a large female effective population size unaffected by the upheaval of the medieval period. Either scenario suggests a genetic resiliency in areas of northwestern medieval Europe.


Asunto(s)
Variación Genética/genética , Genoma Mitocondrial/genética , Peste/historia , Huesos/química , ADN Antiguo/análisis , ADN Mitocondrial/análisis , Dinamarca , Femenino , Historia Medieval , Migración Humana/historia , Humanos , Londres , Masculino , Diente/química
8.
Syst Biol ; 68(4): 594-606, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30535394

RESUMEN

Sequencing of target-enriched libraries is an efficient and cost-effective method for obtaining DNA sequence data from hundreds of nuclear loci for phylogeny reconstruction. Much of the cost of developing targeted sequencing approaches is associated with the generation of preliminary data needed for the identification of orthologous loci for probe design. In plants, identifying orthologous loci has proven difficult due to a large number of whole-genome duplication events, especially in the angiosperms (flowering plants). We used multiple sequence alignments from over 600 angiosperms for 353 putatively single-copy protein-coding genes identified by the One Thousand Plant Transcriptomes Initiative to design a set of targeted sequencing probes for phylogenetic studies of any angiosperm group. To maximize the phylogenetic potential of the probes, while minimizing the cost of production, we introduce a k-medoids clustering approach to identify the minimum number of sequences necessary to represent each coding sequence in the final probe set. Using this method, 5-15 representative sequences were selected per orthologous locus, representing the sequence diversity of angiosperms more efficiently than if probes were designed using available sequenced genomes alone. To test our approximately 80,000 probes, we hybridized libraries from 42 species spanning all higher-order groups of angiosperms, with a focus on taxa not present in the sequence alignments used to design the probes. Out of a possible 353 coding sequences, we recovered an average of 283 per species and at least 100 in all species. Differences among taxa in sequence recovery could not be explained by relatedness to the representative taxa selected for probe design, suggesting that there is no phylogenetic bias in the probe set. Our probe set, which targeted 260 kbp of coding sequence, achieved a median recovery of 137 kbp per taxon in coding regions, a maximum recovery of 250 kbp, and an additional median of 212 kbp per taxon in flanking non-coding regions across all species. These results suggest that the Angiosperms353 probe set described here is effective for any group of flowering plants and would be useful for phylogenetic studies from the species level to higher-order groups, including the entire angiosperm clade itself.


Asunto(s)
Sondas de ADN , Magnoliopsida/genética , Análisis de Secuencia de ADN/métodos , Análisis por Conglomerados
9.
Science ; 361(6397): 81-85, 2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-29976825

RESUMEN

Dogs were present in the Americas before the arrival of European colonists, but the origin and fate of these precontact dogs are largely unknown. We sequenced 71 mitochondrial and 7 nuclear genomes from ancient North American and Siberian dogs from time frames spanning ~9000 years. Our analysis indicates that American dogs were not derived from North American wolves. Instead, American dogs form a monophyletic lineage that likely originated in Siberia and dispersed into the Americas alongside people. After the arrival of Europeans, native American dogs almost completely disappeared, leaving a minimal genetic legacy in modern dog populations. The closest detectable extant lineage to precontact American dogs is the canine transmissible venereal tumor, a contagious cancer clone derived from an individual dog that lived up to 8000 years ago.


Asunto(s)
Evolución Biológica , Enfermedades de los Perros/transmisión , Perros , Domesticación , Neoplasias/veterinaria , Enfermedades de Transmisión Sexual/veterinaria , Américas , Animales , Núcleo Celular/genética , Enfermedades de los Perros/genética , Perros/clasificación , Perros/genética , Genoma Mitocondrial , Migración Humana , Humanos , Filogenia , Enfermedades de Transmisión Sexual/transmisión , Siberia , Lobos/clasificación , Lobos/genética
10.
Elife ; 62017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28072390

RESUMEN

Pregnancy complications are poorly represented in the archeological record, despite their importance in contemporary and ancient societies. While excavating a Byzantine cemetery in Troy, we discovered calcified abscesses among a woman's remains. Scanning electron microscopy of the tissue revealed 'ghost cells', resulting from dystrophic calcification, which preserved ancient maternal, fetal and bacterial DNA of a severe infection, likely chorioamnionitis. Gardnerella vaginalis and Staphylococcus saprophyticus dominated the abscesses. Phylogenomic analyses of ancient, historical, and contemporary data showed that G. vaginalis Troy fell within contemporary genetic diversity, whereas S. saprophyticus Troy belongs to a lineage that does not appear to be commonly associated with human disease today. We speculate that the ecology of S. saprophyticus infection may have differed in the ancient world as a result of close contacts between humans and domesticated animals. These results highlight the complex and dynamic interactions with our microbial milieu that underlie severe maternal infections.


Asunto(s)
Absceso/patología , Fósiles , Infecciones por Bacterias Grampositivas/patología , Complicaciones Infecciosas del Embarazo/patología , Absceso/microbiología , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Femenino , Gardnerella vaginalis/clasificación , Gardnerella vaginalis/genética , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Microscopía Electrónica de Rastreo , Embarazo , Staphylococcus saprophyticus/clasificación , Staphylococcus saprophyticus/genética
11.
Curr Biol ; 26(24): 3407-3412, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27939314

RESUMEN

Smallpox holds a unique position in the history of medicine. It was the first disease for which a vaccine was developed and remains the only human disease eradicated by vaccination. Although there have been claims of smallpox in Egypt, India, and China dating back millennia [1-4], the timescale of emergence of the causative agent, variola virus (VARV), and how it evolved in the context of increasingly widespread immunization, have proven controversial [4-9]. In particular, some molecular-clock-based studies have suggested that key events in VARV evolution only occurred during the last two centuries [4-6] and hence in apparent conflict with anecdotal historical reports, although it is difficult to distinguish smallpox from other pustular rashes by description alone. To address these issues, we captured, sequenced, and reconstructed a draft genome of an ancient strain of VARV, sampled from a Lithuanian child mummy dating between 1643 and 1665 and close to the time of several documented European epidemics [1, 2, 10]. When compared to vaccinia virus, this archival strain contained the same pattern of gene degradation as 20th century VARVs, indicating that such loss of gene function had occurred before ca. 1650. Strikingly, the mummy sequence fell basal to all currently sequenced strains of VARV on phylogenetic trees. Molecular-clock analyses revealed a strong clock-like structure and that the timescale of smallpox evolution is more recent than often supposed, with the diversification of major viral lineages only occurring within the 18th and 19th centuries, concomitant with the development of modern vaccination.


Asunto(s)
ADN Viral/genética , Evolución Molecular , Viruela/historia , Virus de la Viruela/genética , Preescolar , ADN Viral/aislamiento & purificación , Genoma Viral , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Momias/historia , Momias/virología , Filogenia , Viruela/virología , Vacuna contra Viruela/historia , Vacunación/historia
12.
Genetics ; 204(2): 513-529, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27565162

RESUMEN

Lateral gene transfer is an important mechanism for evolution among bacteria. Here, genome-wide gene insertion and deletion rates are modeled in a maximum-likelihood framework with the additional flexibility of modeling potential missing data. The performance of the models is illustrated using simulations and a data set on gene family phyletic patterns from Gardnerella vaginalis that includes an ancient taxon. A novel application involving pseudogenization/genome reduction magnitudes is also illustrated, using gene family data from Mycobacterium spp. Finally, an R package called indelmiss is available from the Comprehensive R Archive Network at https://cran.r-project.org/package=indelmiss, with support documentation and examples.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal/genética , Mutación INDEL/genética , Tasa de Mutación , Interpretación Estadística de Datos , Gardnerella vaginalis/genética , Genoma Bacteriano , Mutagénesis Insercional/genética , Mycobacterium/genética
13.
Mol Ecol Resour ; 16(5): 1264-78, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27416967

RESUMEN

Molecular ecologists seek to genotype hundreds to thousands of loci from hundreds to thousands of individuals at minimal cost per sample. Current methods, such as restriction-site-associated DNA sequencing (RADseq) and sequence capture, are constrained by costs associated with inefficient use of sequencing data and sample preparation. Here, we introduce RADcap, an approach that combines the major benefits of RADseq (low cost with specific start positions) with those of sequence capture (repeatable sequencing of specific loci) to significantly increase efficiency and reduce costs relative to current approaches. RADcap uses a new version of dual-digest RADseq (3RAD) to identify candidate SNP loci for capture bait design and subsequently uses custom sequence capture baits to consistently enrich candidate SNP loci across many individuals. We combined this approach with a new library preparation method for identifying and removing PCR duplicates from 3RAD libraries, which allows researchers to process RADseq data using traditional pipelines, and we tested the RADcap method by genotyping sets of 96-384 Wisteria plants. Our results demonstrate that our RADcap method: (i) methodologically reduces (to <5%) and allows computational removal of PCR duplicate reads from data, (ii) achieves 80-90% reads on target in 11 of 12 enrichments, (iii) returns consistent coverage (≥4×) across >90% of individuals at up to 99.8% of the targeted loci, (iv) produces consistently high occupancy matrices of genotypes across hundreds of individuals and (v) costs significantly less than current approaches.


Asunto(s)
Técnicas de Genotipaje/métodos , Análisis de Secuencia de ADN/métodos , ADN/química , ADN/genética , ADN/metabolismo , Enzimas de Restricción del ADN/metabolismo , Polimorfismo de Nucleótido Simple , Wisteria/clasificación , Wisteria/genética
14.
J Hum Evol ; 79: 21-34, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25601038

RESUMEN

High-throughput sequencing (HTS) has radically altered approaches to human evolutionary research. Recent contributions highlight that HTS is able to reach depths of the human lineage previously thought to be impossible. In this paper, we outline the methodological advances afforded by recent developments in DNA recovery, data output, scalability, speed, and resolution of the current sequencing technology. We review and critically evaluate the 'DNA pipeline' for ancient samples: from DNA extraction, to constructing immortalized sequence libraries, to enrichment strategies (e.g., polymerase chain reaction [PCR] and hybridization capture), and finally, to bioinformatic analyses of sequence data. We argue that continued evaluations and improvements to this process are essential to ensure sequence data validity. Also, we highlight the role of contamination and authentication in ancient DNA-HTS, which is particularly relevant to ancient human genomics, since sequencing the genomes of hominins such as Homo erectus and Homo heidelbergensis may soon be within the realm of possibility.


Asunto(s)
Evolución Biológica , Fósiles , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Hominidae/genética , Animales , Antropología Física , ADN/análisis , ADN/genética , Humanos
15.
Sci Rep ; 4: 4245, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24603850

RESUMEN

Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and Yersinia pestis ("Black Death" plague) in a medieval tooth, which represented only minute fractions (0.03% and 0.08% alignable high-throughput shotgun sequencing reads) of their respective DNA content. This demonstrates that the LLMDA can identify primary and/or co-infecting bacterial pathogens in ancient samples, thereby serving as a rapid and inexpensive paleopathological screening tool to study health across both space and time.


Asunto(s)
Arqueología , ADN Bacteriano , Análisis de Secuencia por Matrices de Oligonucleótidos , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Filogenia , Vibrio cholerae/clasificación , Vibrio cholerae/genética , Yersinia pestis/clasificación , Yersinia pestis/genética
16.
Lancet Infect Dis ; 14(4): 319-26, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24480148

RESUMEN

BACKGROUND: Yersinia pestis has caused at least three human plague pandemics. The second (Black Death, 14-17th centuries) and third (19-20th centuries) have been genetically characterised, but there is only a limited understanding of the first pandemic, the Plague of Justinian (6-8th centuries). To address this gap, we sequenced and analysed draft genomes of Y pestis obtained from two individuals who died in the first pandemic. METHODS: Teeth were removed from two individuals (known as A120 and A76) from the early medieval Aschheim-Bajuwarenring cemetery (Aschheim, Bavaria, Germany). We isolated DNA from the teeth using a modified phenol-chloroform method. We screened DNA extracts for the presence of the Y pestis-specific pla gene on the pPCP1 plasmid using primers and standards from an established assay, enriched the DNA, and then sequenced it. We reconstructed draft genomes of the infectious Y pestis strains, compared them with a database of genomes from 131 Y pestis strains from the second and third pandemics, and constructed a maximum likelihood phylogenetic tree. FINDINGS: Radiocarbon dating of both individuals (A120 to 533 AD [plus or minus 98 years]; A76 to 504 AD [plus or minus 61 years]) places them in the timeframe of the first pandemic. Our phylogeny contains a novel branch (100% bootstrap at all relevant nodes) leading to the two Justinian samples. This branch has no known contemporary representatives, and thus is either extinct or unsampled in wild rodent reservoirs. The Justinian branch is interleaved between two extant groups, 0.ANT1 and 0.ANT2, and is distant from strains associated with the second and third pandemics. INTERPRETATION: We conclude that the Y pestis lineages that caused the Plague of Justinian and the Black Death 800 years later were independent emergences from rodents into human beings. These results show that rodent species worldwide represent important reservoirs for the repeated emergence of diverse lineages of Y pestis into human populations. FUNDING: McMaster University, Northern Arizona University, Social Sciences and Humanities Research Council of Canada, Canada Research Chairs Program, US Department of Homeland Security, US National Institutes of Health, Australian National Health and Medical Research Council.


Asunto(s)
ADN Bacteriano/aislamiento & purificación , Pandemias/historia , Filogenia , Peste/historia , Yersinia pestis/genética , África/epidemiología , Animales , Asia/epidemiología , Reservorios de Enfermedades , Europa (Continente)/epidemiología , Historia Medieval , Humanos , Peste/epidemiología , Peste/genética , Diente/microbiología , Yersinia pestis/aislamiento & purificación
17.
Mol Biol Evol ; 31(5): 1292-4, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24531081

RESUMEN

We report metrics from complete genome capture of nuclear DNA from extinct mammoths using biotinylated RNAs transcribed from an Asian elephant DNA extract. Enrichment of the nuclear genome ranged from 1.06- to 18.65-fold, to an apparent maximum threshold of ∼80% on-target. This projects an order of magnitude less costly complete genome sequencing from long-dead organisms, even when a reference genome is unavailable for bait design.


Asunto(s)
Genoma , Genómica/métodos , Mamuts/genética , Análisis de Secuencia de ADN/métodos , Animales , ADN/genética , ADN/aislamiento & purificación , Elefantes/genética , Fósiles , Historia Antigua , Alineación de Secuencia/métodos
18.
N Engl J Med ; 370(4): 334-40, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24401020

RESUMEN

In the 19th century, there were several major cholera pandemics in the Indian subcontinent, Europe, and North America. The causes of these outbreaks and the genomic strain identities remain a mystery. We used targeted high-throughput sequencing to reconstruct the Vibrio cholerae genome from the preserved intestine of a victim of the 1849 cholera outbreak in Philadelphia, part of the second cholera pandemic. This O1 biotype strain has 95 to 97% similarity with the classical O395 genome, differing by 203 single-nucleotide polymorphisms (SNPs), lacking three genomic islands, and probably having one or more tandem cholera toxin prophage (CTX) arrays, which potentially affected its virulence. This result highlights archived medical remains as a potential resource for investigations into the genomic origins of past pandemics.


Asunto(s)
Cólera/historia , Pandemias/historia , Vibrio cholerae/genética , Técnicas de Tipificación Bacteriana , Cólera/epidemiología , Cólera/microbiología , ADN Bacteriano/aislamiento & purificación , ADN Mitocondrial/análisis , Evolución Molecular , Genoma Bacteriano , Islas Genómicas , Historia del Siglo XIX , Humanos , Intestinos/microbiología , Intestinos/patología , Masculino , Philadelphia/epidemiología , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Vibrio cholerae/clasificación , Vibrio cholerae/patogenicidad , Virulencia , Factores de Virulencia/análisis
19.
Genome Biol ; 12(5): R51, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21627792

RESUMEN

BACKGROUND: Late Pleistocene North America hosted at least two divergent and ecologically distinct species of mammoth: the periglacial woolly mammoth (Mammuthus primigenius) and the subglacial Columbian mammoth (Mammuthus columbi). To date, mammoth genetic research has been entirely restricted to woolly mammoths, rendering their genetic evolution difficult to contextualize within broader Pleistocene paleoecology and biogeography. Here, we take an interspecific approach to clarifying mammoth phylogeny by targeting Columbian mammoth remains for mitogenomic sequencing. RESULTS: We sequenced the first complete mitochondrial genome of a classic Columbian mammoth, as well as the first complete mitochondrial genome of a North American woolly mammoth. Somewhat contrary to conventional paleontological models, which posit that the two species were highly divergent, the M. columbi mitogenome we obtained falls securely within a subclade of endemic North American M. primigenius. CONCLUSIONS: Though limited, our data suggest that the two species interbred at some point in their evolutionary histories. One potential explanation is that woolly mammoth haplotypes entered Columbian mammoth populations via introgression at subglacial ecotones, a scenario with compelling parallels in extant elephants and consistent with certain regional paleontological observations. This highlights the need for multi-genomic data to sufficiently characterize mammoth evolutionary history. Our results demonstrate that the use of next-generation sequencing technologies holds promise in obtaining such data, even from non-cave, non-permafrost Pleistocene depositional contexts.


Asunto(s)
Evolución Biológica , ADN Mitocondrial/genética , Extinción Biológica , Genoma Mitocondrial , Genómica/métodos , Mamuts/genética , Animales , Elefantes/clasificación , Elefantes/genética , Fósiles , Haplotipos , Mamuts/clasificación , América del Norte , Filogenia , Filogeografía , Análisis de Secuencia de ADN , América del Sur
20.
Anal Biochem ; 400(1): 110-7, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20079706

RESUMEN

Archival formalin-fixed paraffin-embedded (FFPE) human tissue collections are typically in poor states of storage across the developing world. With advances in biomolecular techniques, these extraordinary and virtually untapped resources have become an essential part of retrospective epidemiological studies. To successfully use such tissues in genomic studies, scientists require high nucleic acid yields and purity. In spite of the increasing number of FFPE tissue kits available, few studies have analyzed their applicability in recovering high-quality nucleic acids from archived human autopsy samples. Here we provide a study involving 10 major extraction methods used to isolate total nucleic acid from FFPE tissues ranging in age from 3 to 13years. Although all 10 methods recovered quantifiable amounts of DNA, only 6 recovered quantifiable RNA, varying considerably and generally yielding lower DNA concentrations. Overall, we show quantitatively that TrimGen's WaxFree method and our in-house phenol-chloroform extraction method recovered the highest yields of amplifiable DNA, with considerable polymerase chain reaction (PCR) inhibition, whereas Ambion's RecoverAll method recovered the most amplifiable RNA.


Asunto(s)
ADN/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , ARN/aislamiento & purificación , Cloroformo/química , Formaldehído/química , Humanos , Adhesión en Parafina , Fenol/química , Factores de Tiempo , Fijación del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...