Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood ; 143(1): 21-31, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37647633

RESUMEN

ABSTRACT: Patients who undergo human leukocyte antigen-matched unrelated donor (MUD) allogeneic hematopoietic stem cell transplantation (HSCT) with myeloablative conditioning for hematologic malignancies often develop acute graft-versus-host disease (GVHD) despite standard calcineurin inhibitor-based prophylaxis in combination with methotrexate. This trial evaluated a novel human CD24 fusion protein (CD24Fc/MK-7110) that selectively targets and mitigates inflammation due to damage-associated molecular patterns underlying acute GVHD while preserving protective immunity after myeloablative conditioning. This phase 2a, multicenter study evaluated the pharmacokinetics, safety, and efficacy of CD24Fc in combination with tacrolimus and methotrexate in preventing acute GVHD in adults undergoing MUD HSCT for hematologic malignancies. A double-blind, placebo-controlled, dose-escalation phase to identify a recommended dose was followed by an open-label expansion phase with matched controls to further evaluate the efficacy and safety of CD24Fc in preventing acute GVHD. A multidose regimen of CD24Fc produced sustained drug exposure with similar safety outcomes when compared with single-dose regimens. Grade 3 to 4 acute GVHD-free survival at day 180 was 96.2% (95% confidence interval [CI], 75.7-99.4) in the CD24Fc expansion cohort (CD24Fc multidose), compared with 73.6% (95% CI, 63.2-81.4) in matched controls (hazard ratio, 0.1 [95% CI, 0.0-0.6]; log-rank test, P = .03). No participants in the CD24Fc escalation or expansion phases experienced dose-limiting toxicities (DLTs). The multidose regimen of CD24Fc was well tolerated with no DLTs and was associated with high rates of severe acute GVHD-free survival after myeloablative MUD HSCT. This trial was registered at ClinicalTrials.gov as #NCT02663622.


Asunto(s)
Enfermedad Injerto contra Huésped , Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Adulto , Humanos , Metotrexato/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante Homólogo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Acondicionamiento Pretrasplante/efectos adversos
2.
Genes Dis ; 10(3): 1075-1089, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37396505

RESUMEN

Major challenges such as nuclease degradation, rapid renal clearance, non-specific delivery, poor cellular uptake and inflammatory response have limited the clinical application of small RNA-mediated gene silencing. To overcome these challenges, we designed a novel targeting small RNA delivery platform comprising of three oligonucleotides: (1) a guide RNA sequence, (2) part of a passenger sequence linked to a DNA aptamer via a PEG linker, and (3) another passenger sequence conjugated to cholesterol, which assemble through complementary base pair annealing. Remarkably, in the presence of magnesium, this molecule self-assembled into a nanoparticle with a hydrophobic cholesterol core, hydrophilic RNA oligonucleotide shell and PEG-linked DNA aptamer flare. The nanoparticles conferred protection to the RNA oligonucleotides against nuclease degradation, which increased bioavailability, and reduced systemic inflammatory responses. The aptamer allowed targeted delivery of RNA therapeutics through cell-specific surface markers, and once inside the cell, the nanoparticles induced lysosomal leakage that released the RNA oligonucleotides into the cytosol to achieve gene silencing. We created a c-Kit-targeting miR-26a delivery particle that specifically accumulated in c-Kit+ breast cancer, significantly increased T cell recruitment, and inhibited tumor growth. Regression of large established tumors were achieved when the nanoparticle was used in combination with anti-CTLA-4 monoclonal antibody.

3.
Sci Transl Med ; 15(685): eabm5663, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857433

RESUMEN

Immune checkpoint inhibitors (ICIs), such as nivolumab and ipilimumab, not only elicit antitumor responses in a wide range of human cancers but also cause severe immune-related adverse events (irAEs), including death. A largely unmet medical need is to treat irAEs without abrogating the immunotherapeutic effect of ICIs. Although abatacept has been used to treat irAEs, it risks neutralizing the anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) monoclonal antibodies administered for cancer therapy, thereby reducing the efficacy of anti-CTLA-4 immunotherapy. To avoid this caveat, we compared wild-type abatacept and mutants of CTLA-4-Ig for their binding to clinically approved anti-CTLA-4 antibodies and for their effect on both irAEs and immunotherapy conferred by anti-CTLA-4 and anti-PD-1 antibodies. Here, we report that whereas abatacept neutralized the therapeutic effect of anti-CTLA-4 antibodies, the mutants that bound to B7-1 and B7-2, but not to clinical anti-CTLA-4 antibodies, including clinically used belatacept, abrogated irAEs without affecting cancer immunotherapy. Our data demonstrate that anti-CTLA-4-induced irAEs can be corrected by provision of soluble CTLA-4 variants and that the clinically available belatacept may emerge as a broadly applicable drug to abrogate irAEs while preserving the therapeutic efficacy of CTLA-4-targeting ICIs.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Humanos , Abatacept , Ipilimumab , Nivolumab
4.
Cell Metab ; 34(8): 1088-1103.e6, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35921817

RESUMEN

The molecular interactions that regulate chronic inflammation underlying metabolic disease remain largely unknown. Since the CD24-Siglec interaction regulates inflammatory response to danger-associated molecular patterns (DAMPs), we have generated multiple mouse strains with single or combined mutations of Cd24 or Siglec genes to explore the role of the CD24-Siglec interaction in metaflammation and metabolic disorder. Here, we report that the CD24-Siglec-E axis, but not other Siglecs, is a key suppressor of obesity-related metabolic dysfunction. Inactivation of the CD24-Siglec-E pathway exacerbates, while CD24Fc treatment alleviates, diet-induced metabolic disorders, including obesity, dyslipidemia, insulin resistance, and nonalcoholic steatohepatitis (NASH). Mechanistically, sialylation-dependent recognition of CD24 by Siglec-E induces SHP-1 recruitment and represses metaflammation to protect against metabolic syndrome. A first-in-human study of CD24Fc (NCT02650895) supports the significance of this pathway in human lipid metabolism and inflammation. These findings identify the CD24-Siglec-E axis as an innate immune checkpoint against metaflammation and metabolic disorder and suggest a promising therapeutic target for metabolic disease.


Asunto(s)
Enfermedades Metabólicas , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Animales , Antígeno CD24/genética , Antígeno CD24/metabolismo , Estudios Clínicos como Asunto , Humanos , Inflamación , Ratones , Obesidad , Fagocitosis , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo
6.
Lancet Infect Dis ; 22(5): 611-621, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35286843

RESUMEN

BACKGROUND: Non-antiviral therapeutic options are required for the treatment of hospitalised patients with COVID-19. CD24Fc is an immunomodulator with potential to reduce the exaggerated inflammatory response to tissue injuries. We aimed to evaluate the safety and efficacy of CD24Fc in hospitalised adults with COVID-19 receiving oxygen support. METHODS: We conducted a randomised, double-blind, placebo-controlled, phase 3 study at nine medical centres in the USA. Hospitalised patients (age ≥18 years) with confirmed SARS-CoV-2 infection who were receiving oxygen support and standard of care were randomly assigned (1:1) by site-stratified block randomisation to receive a single intravenous infusion of CD24Fc 480 mg or placebo. The study funder, investigators, and patients were masked to treatment group assignment. The primary endpoint was time to clinical improvement over 28 days, defined as time that elapsed between a baseline National Institute of Allergy and Infectious Diseases ordinal scale score of 2-4 and reaching a score of 5 or higher or hospital discharge. The prespecified primary interim analysis was done when 146 participants reached the time to clinical improvement endpoint. Efficacy was assessed in the intention-to-treat population. Safety was assessed in the as-treated population. This study is registered with ClinicalTrials.gov, NCT04317040. FINDINGS: Between April 24 and Sept 22, 2020, 243 hospitalised patients were assessed for eligibility and 234 were enrolled and randomly assigned to receive CD24Fc (n=116) or placebo (n=118). The prespecified interim analysis was done when 146 participants reached the time to clinical improvement endpoint among 197 randomised participants. In the interim analysis, the 28-day clinical improvement rate was 82% (81 of 99) for CD24Fc versus 66% (65 of 98) for placebo; median time to clinical improvement was 6·0 days (95% CI 5·0-8·0) in the CD24Fc group versus 10·0 days (7·0-15·0) in the placebo group (hazard ratio [HR] 1·61, 95% CI 1·16-2·23; log-rank p=0·0028, which crossed the prespecified efficacy boundary [α=0·0147]). 37 participants were randomly assigned after the interim analysis data cutoff date; among the 234 randomised participants, median time to clinical improvement was 6·0 days (95% CI 5·0-9·0) in the CD24Fc group versus 10·5 days (7·0-15·0) in the placebo group (HR 1·40, 95% CI 1·02-1·92; log-rank p=0·037). The proportion of participants with disease progression within 28 days was 19% (22 of 116) in the CD24Fc group versus 31% (36 of 118) in the placebo group (HR 0·56, 95% CI 0·33-0·95; unadjusted p=0·031). The incidences of adverse events and serious adverse events were similar in both groups. No treatment-related adverse events were observed. INTERPRETATION: CD24Fc is generally well tolerated and accelerates clinical improvement of hospitalised patients with COVID-19 who are receiving oxygen support. These data suggest that targeting inflammation in response to tissue injuries might provide a therapeutic option for patients hospitalised with COVID-19. FUNDING: Merck & Co, National Cancer Institute, OncoImmune.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Adolescente , Adulto , Método Doble Ciego , Humanos , Factores Inmunológicos/efectos adversos , Oxígeno , SARS-CoV-2 , Resultado del Tratamiento
7.
J Clin Invest ; 132(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35239514

RESUMEN

A combination of anti-CTLA-4 plus anti-PD-1/PD-L1 is the most effective cancer immunotherapy but causes high incidence of immune-related adverse events (irAEs). Here we report that targeting of HIF-1α suppressed PD-L1 expression on tumor cells and tumor-infiltrating myeloid cells, but unexpectedly induced PD-L1 in normal tissues by an IFN-γ-dependent mechanism. Targeting the HIF-1α/PD-L1 axis in tumor cells reactivated tumor-infiltrating lymphocytes and caused tumor rejection. The HIF-1α inhibitor echinomycin potentiated the cancer immunotherapeutic effects of anti-CTLA-4 therapy, with efficacy comparable to that of anti-CTLA-4 plus anti-PD-1 antibodies. However, while anti-PD-1 exacerbated irAEs triggered by ipilimumab, echinomycin protected mice against irAEs by increasing PD-L1 levels in normal tissues. Our data suggest that targeting HIF-1α fortifies the immune tolerance function of the PD-1/PD-L1 checkpoint in normal tissues but abrogates its immune evasion function in the tumor microenvironment to achieve safer and more effective immunotherapy.


Asunto(s)
Equinomicina , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias , Animales , Antígeno B7-H1 , Equinomicina/farmacología , Evasión Inmune , Tolerancia Inmunológica , Linfocitos Infiltrantes de Tumor , Ratones , Neoplasias/terapia , Microambiente Tumoral
8.
J Hematol Oncol ; 15(1): 5, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012610

RESUMEN

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) blunts the broad inflammatory response induced by damage-associated molecular patterns via binding to extracellular high mobility group box 1 and heat shock proteins, as well as regulating the downstream Siglec10-Src homology 2 domain-containing phosphatase 1 pathway. A recent randomized phase III trial evaluating CD24Fc for patients with severe COVID-19 (SAC-COVID; NCT04317040) demonstrated encouraging clinical efficacy. METHODS: Using a systems analytical approach, we studied peripheral blood samples obtained from patients enrolled at a single institution in the SAC-COVID trial to discern the impact of CD24Fc treatment on immune homeostasis. We performed high dimensional spectral flow cytometry and measured the levels of a broad array of cytokines and chemokines to discern the impact of CD24Fc treatment on immune homeostasis in patients with COVID-19. RESULTS: Twenty-two patients were enrolled, and the clinical characteristics from the CD24Fc vs. placebo groups were matched. Using high-content spectral flow cytometry and network-level analysis, we found that patients with severe COVID-19 had systemic hyper-activation of multiple cellular compartments, including CD8+ T cells, CD4+ T cells, and CD56+ natural killer cells. Treatment with CD24Fc blunted this systemic inflammation, inducing a return to homeostasis in NK and T cells without compromising the anti-Spike protein antibody response. CD24Fc significantly attenuated the systemic cytokine response and diminished the cytokine coexpression and network connectivity linked with COVID-19 severity and pathogenesis. CONCLUSIONS: Our data demonstrate that CD24Fc rapidly down-modulates systemic inflammation and restores immune homeostasis in SARS-CoV-2-infected individuals, supporting further development of CD24Fc as a novel therapeutic against severe COVID-19.


Asunto(s)
Antígeno CD24/uso terapéutico , COVID-19/prevención & control , Síndrome de Liberación de Citoquinas/prevención & control , Inflamación/prevención & control , SARS-CoV-2/efectos de los fármacos , Anciano , Alarminas/inmunología , Alarminas/metabolismo , Antígeno CD24/química , COVID-19/inmunología , COVID-19/virología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/metabolismo , Método Doble Ciego , Femenino , Proteína HMGB1/inmunología , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico/inmunología , Proteínas de Choque Térmico/metabolismo , Homeostasis/efectos de los fármacos , Homeostasis/inmunología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/virología , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Solubilidad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/virología , Resultado del Tratamiento
9.
medRxiv ; 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34462760

RESUMEN

BACKGROUND: SARS-CoV-2 causes COVID-19 through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns (DAMPs) and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) is able to blunt the broad inflammatory response induced by DAMPs in multiple models. A recent randomized phase III trial evaluating the impact of CD24Fc in patients with severe COVID-19 demonstrated encouraging clinical efficacy. METHODS: We studied peripheral blood samples obtained from patients enrolled at a single institution in the SAC-COVID trial (NCT04317040) collected before and after treatment with CD24Fc or placebo. We performed high dimensional spectral flow cytometry analysis of peripheral blood mononuclear cells and measured the levels of a broad array of cytokines and chemokines. A systems analytical approach was used to discern the impact of CD24Fc treatment on immune homeostasis in patients with COVID-19. FINDINGS: Twenty-two patients were enrolled, and the clinical characteristics from the CD24Fc vs. placebo groups were matched. Using high-content spectral flow cytometry and network-level analysis, we found systemic hyper-activation of multiple cellular compartments in the placebo group, including CD8+ T cells, CD4+ T cells, and CD56+ NK cells. By contrast, CD24Fc-treated patients demonstrated blunted systemic inflammation, with a return to homeostasis in both NK and T cells within days without compromising the ability of patients to mount an effective anti-Spike protein antibody response. A single dose of CD24Fc significantly attenuated induction of the systemic cytokine response, including expression of IL-10 and IL-15, and diminished the coexpression and network connectivity among extensive circulating inflammatory cytokines, the parameters associated with COVID-19 disease severity. INTERPRETATION: Our data demonstrates that CD24Fc treatment rapidly down-modulates systemic inflammation and restores immune homeostasis in SARS-CoV-2-infected individuals, supporting further development of CD24Fc as a novel therapeutic against severe COVID-19. FUNDING: NIH.

11.
Cancers (Basel) ; 12(2)2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31991588

RESUMEN

BACKGROUND: CTLA-4 was the first immune checkpoint targeted for cancer therapy and the first target validated by the FDA (Food and Drug Administration) after approval of the anti-CTLA-4 antibody, Ipilimumab. However, clinical response rates to anti-CTLA-4 antibodies are lower while the rates of immunotherapy-related adverse events (irAE) are higher than with anti-PD-1 antibodies. As a result, the effort to target CTLA-4 for cancer immunotherapy has stagnated. To reinvigorate CTLA-4-targeted immunotherapy, we and others have reported that rather than blocking CTLA-4 interaction with its cognate targets, CD80 and CD86, anti-CTLA-4 antibodies achieve their therapeutic responses through selective depletion of regulatory T cells in the tumor microenvironment. Accordingly, we have developed a new generation of anti-CTLA-4 antibodies with reduced irAE and enhanced antibody-dependent cell-mediated cytotoxicity/phagocytosis (ADCC/ADCP). A major unresolved issue is how to select appropriate cancer types for future clinical development. METHODS: We generated a landscape of the immune tumor microenvironment from RNAseq and genomic data of 7279 independent cancer samples belonging to 22 cancer types from The Cancer Genomics Atlas (TCGA) database. Based primarily on genomic and RNAseq data from pre-treatment clinical samples of melanoma patients who were later identified as responders and nonresponders to the anti-CTLA-4 antibody Ipilimumab, we identified 5 ranking components of responsiveness to anti-CTLA-4, including CTLA-4 gene expression, ADCC potential, mutation burden, as well as gene enrichment and cellular composition that favor CTLA-4 responsiveness. The total ranking number was calculated by the sum of 5 independent partitioning values, each comprised of 1-3 components. RESULTS: Our analyses predict metastatic melanoma as the most responsive cancer, as expected. Surprisingly, non-small cell lung carcinoma (NSCLC) is predicted to be highly responsive to anti-CTLA-4 antibodies. Single-cell RNAseq analysis and flow cytometry of human NSCLC-infiltrating T cells supports the potential of anti-CTLA-4 antibodies to selectively deplete intratumoral Treg. CONCLUSIONS: Our in silico and experimental analyses suggest that non-small cell lung carcinoma will likely respond to a new generation of anti-CTLA-4 monoclonal antibodies. Our approach provides an objective ranking of the sensitivity of human cancers to anti-CTLA-4 antibodies. The comprehensive ranking of major cancer types provides a roadmap for clinical development of the next generation of anti-CTLA-4 antibodies.

12.
Cell Res ; 29(8): 609-627, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31267017

RESUMEN

It remains unclear why the clinically used anti-CTLA-4 antibodies, popularly called checkpoint inhibitors, have severe immunotherapy-related adverse effects (irAEs) and yet suboptimal cancer immunotherapeutic effects (CITE). Here we report that while irAE-prone Ipilimumab and TremeIgG1 rapidly direct cell surface CTLA-4 for lysosomal degradation, the non-irAE-prone antibodies we generated, HL12 or HL32, dissociate from CTLA-4 after endocytosis and allow CTLA-4 recycling to cell surface by the LRBA-dependent mechanism. Disrupting CTLA-4 recycling results in robust CTLA-4 downregulation by all anti-CTLA-4 antibodies and confers toxicity to a non-irAE-prone anti-CTLA-4 mAb. Conversely, increasing the pH sensitivity of TremeIgG1 by introducing designed tyrosine-to-histidine mutations prevents antibody-triggered lysosomal CTLA-4 downregulation and dramatically attenuates irAE. Surprisingly, by avoiding CTLA-4 downregulation and due to their increased bioavailability, pH-sensitive anti-CTLA-4 antibodies are more effective in intratumor regulatory T-cell depletion and rejection of large established tumors. Our data establish a new paradigm for cancer research that allows for abrogating irAE while increasing CITE of anti-CTLA-4 antibodies.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Antígeno CTLA-4/metabolismo , Inmunoterapia/efectos adversos , Ipilimumab/uso terapéutico , Lisosomas/metabolismo , Neoplasias/terapia , Proteolisis/efectos de los fármacos , Animales , Antineoplásicos Inmunológicos/efectos adversos , Antineoplásicos Inmunológicos/farmacología , Células CHO , Antígeno CTLA-4/genética , Antígeno CTLA-4/inmunología , Cricetulus , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Inmunoglobulina G/farmacología , Inmunoglobulina G/uso terapéutico , Ipilimumab/efectos adversos , Ipilimumab/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Linfocitos T Reguladores/inmunología , Transfección
13.
Antiviral Res ; 157: 9-17, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29983395

RESUMEN

Chronic immune activation and systemic inflammation are underlying causes of acquired immunodeficiency syndrome (AIDS). Products of virus replication and microbial translocation, co-infection or opportunistic pathogens, and danger-associated molecular patterns have been reported to contribute to chronic immune activation and inflammation in human immunodeficiency virus type-1/simian immunodeficiency virus (HIV-1/SIV) infection or other disease. To develop new strategies and therapies for HIV-1/AIDS, we tested if the CD24 and Fc fusion protein (CD24Fc), which interacts with danger-associated molecular patterns and sialic acid binding Ig-like lectin to attenuate inflammation, can protect Chinese rhesus macaques (ChRMs) with SIV infection. We found that CD24Fc treatment decreased weight loss, wasting syndrome, intractable diarrhea, and AIDS morbidity and mortality, while it was well tolerated by SIV-infected animals. Corresponding to the elimination of intractable diarrhea, CD24Fc significantly reduced the expression of IL-6 and indoleamine 2, 3-dioxygenase-1 in peripheral blood mononuclear cell and inflammation in the ileum, colon and rectum based on the reduction of inflammatory cells, pathological scores and expression of inflammatory cytokines. Furthermore, although CD24Fc did not restore CD4+ T cell number or significantly change T cell subsets or CD4+ T cell activation, it maintained low levels of plasma soluble CD14, CD8+ T cell activation, viral load and proviral load in the peripheral blood mononuclear cells and marrow. These results suggested that CD24Fc confers protection to SIV-infected ChRMs against progression to AIDS. It was also implied that CD24Fc may be a potential therapeutic approach for the control of HIV-1/AIDS.


Asunto(s)
Antígeno CD24/administración & dosificación , Fragmentos Fc de Inmunoglobulinas/administración & dosificación , Factores Inmunológicos/administración & dosificación , Proteínas Recombinantes de Fusión/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Animales , Antígeno CD24/genética , Antígeno CD24/inmunología , VIH-1/inmunología , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/inmunología , Factores Inmunológicos/genética , Factores Inmunológicos/inmunología , Intestinos/patología , Macaca mulatta , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/inmunología , Análisis de Supervivencia , Resultado del Tratamiento , Carga Viral
14.
Cell Res ; 28(4): 416-432, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29472691

RESUMEN

It is assumed that anti-CTLA-4 antibodies cause tumor rejection by blocking negative signaling from B7-CTLA-4 interactions. Surprisingly, at concentrations considerably higher than plasma levels achieved by clinically effective dosing, the anti-CTLA-4 antibody Ipilimumab blocks neither B7 trans-endocytosis by CTLA-4 nor CTLA-4 binding to immobilized or cell-associated B7. Consequently, Ipilimumab does not increase B7 on dendritic cells (DCs) from either CTLA4 gene humanized (Ctla4 h/h ) or human CD34+ stem cell-reconstituted NSG™ mice. In Ctla4 h/m mice expressing both human and mouse CTLA4 genes, anti-CTLA-4 antibodies that bind to human but not mouse CTLA-4 efficiently induce Treg depletion and Fc receptor-dependent tumor rejection. The blocking antibody L3D10 is comparable to the non-blocking Ipilimumab in causing tumor rejection. Remarkably, L3D10 progenies that lose blocking activity during humanization remain fully competent in inducing Treg depletion and tumor rejection. Anti-B7 antibodies that effectively block CD4 T cell activation and de novo CD8 T cell priming in lymphoid organs do not negatively affect the immunotherapeutic effect of Ipilimumab. Thus, clinically effective anti-CTLA-4 mAb causes tumor rejection by mechanisms that are independent of checkpoint blockade but dependent on the host Fc receptor. Our data call for a reappraisal of the CTLA-4 checkpoint blockade hypothesis and provide new insights for the next generation of safe and effective anti-CTLA-4 mAbs.


Asunto(s)
Anticuerpos Bloqueadores/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno CTLA-4/inmunología , Ipilimumab/uso terapéutico , Neoplasias/terapia , Animales , Anticuerpos Bloqueadores/inmunología , Antineoplásicos Inmunológicos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Antígeno CTLA-4/antagonistas & inhibidores , Femenino , Humanos , Inmunoterapia/métodos , Ipilimumab/inmunología , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/patología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología
15.
Cell Res ; 28(4): 433-447, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29463898

RESUMEN

Anti-CTLA-4 monoclonal antibodies (mAbs) confer a cancer immunotherapeutic effect (CITE) but cause severe immunotherapy-related adverse events (irAE). Targeting CTLA-4 has shown remarkable long-term benefit and thus remains a valuable tool for cancer immunotherapy if the irAE can be brought under control. An animal model, which recapitulates clinical irAE and CITE, would be valuable for developing safer CTLA-4-targeting reagents. Here, we report such a model using mice harboring the humanized Ctla4 gene. In this model, the clinically used drug, Ipilimumab, induced severe irAE especially when combined with an anti-PD-1 antibody; whereas another mAb, L3D10, induced comparable CITE with very mild irAE under the same conditions. The irAE corresponded to systemic T cell activation and resulted in reduced ratios of regulatory to effector T cells (Treg/Teff) among autoreactive T cells. Using mice that were either homozygous or heterozygous for the human allele, we found that the irAE required bi-allelic engagement, while CITE only required monoallelic engagement. As with the immunological distinction for monoallelic vs bi-allelic engagement, we found that bi-allelic engagement of the Ctla4 gene was necessary for preventing conversion of autoreactive T cells into Treg cells. Humanization of L3D10, which led to loss of blocking activity, further increased safety without affecting the therapeutic effect. Taken together, our data demonstrate that complete CTLA-4 occupation, systemic T cell activation and preferential expansion of self-reactive T cells are dispensable for tumor rejection but correlate with irAE, while blocking B7-CTLA-4 interaction impacts neither safety nor efficacy of anti-CTLA-4 antibodies. These data provide important insights for the clinical development of safer and potentially more effective CTLA-4-targeting immunotherapy.


Asunto(s)
Antineoplásicos Inmunológicos/efectos adversos , Antígeno CTLA-4/inmunología , Inmunoterapia/efectos adversos , Ipilimumab/efectos adversos , Neoplasias/terapia , Animales , Antígeno CTLA-4/genética , Línea Celular Tumoral , Femenino , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/patología , Receptor de Muerte Celular Programada 1/inmunología
16.
PLoS Pathog ; 5(1): e1000265, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19148273

RESUMEN

SM1 is a twelve-amino-acid peptide that binds tightly to the Anopheles salivary gland and inhibits its invasion by Plasmodium sporozoites. By use of UV-crosslinking experiments between the peptide and its salivary gland target protein, we have identified the Anopheles salivary protein, saglin, as the receptor for SM1. Furthermore, by use of an anti-SM1 antibody, we have determined that the peptide is a mimotope of the Plasmodium sporozoite Thrombospondin Related Anonymous Protein (TRAP). TRAP binds to saglin with high specificity. Point mutations in TRAP's binding domain A abrogate binding, and binding is competed for by the SM1 peptide. Importantly, in vivo down-regulation of saglin expression results in strong inhibition of salivary gland invasion. Together, the results suggest that saglin/TRAP interaction is crucial for salivary gland invasion by Plasmodium sporozoites.


Asunto(s)
Proteínas de Insectos/metabolismo , Oligopéptidos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Animales , Anopheles/parasitología , Interacciones Huésped-Parásitos/fisiología , Malaria/transmisión , Oligopéptidos/química , Plasmodium falciparum/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Glándulas Salivales/parasitología , Esporozoítos/fisiología
17.
Biochemistry ; 45(31): 9540-9, 2006 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-16878988

RESUMEN

The gene Aedes aegypti intestinal mucin 1 (AeIMUC1) encodes a putative peritrophic matrix (PM) protein that is expressed in the midgut of mosquito larvae and adults and is upregulated in response to exposure to heavy metals. The AeIMUC1 protein has a predicted secretory signal peptide and three putative chitin-binding domains (CBDs) with an intervening mucin-like domain. Immunofluorescence and immunoelectron microscopy experiments established that AeIMUC1 is a bona fide PM protein, and binding of the recombinant protein to chitin was demonstrated in vitro. Previous experiments suggested that the Ae. aegypti PM can bind toxic heme molecules generated during blood digestion. However, the identity of the binding molecule(s) was unknown. Using of heme-agarose beads and spectrophotometric and microcalorimetric titrations, we show that recombinant AeIMUC1 can bind large amounts of heme in vitro, suggesting for the first time a role for a PM protein in heme detoxification during blood digestion. Binding of heme to AeIMUC1 was accompanied by an altered circular dichroism spectrum indicating a change in protein conformation, consistent with an increase in secondary structure. Heme-binding activity was mapped to the AeIMUC1 CBDs, suggesting that these domains possess dual chitin- and heme-binding activity.


Asunto(s)
Aedes/metabolismo , Quitina/metabolismo , Hemo/metabolismo , Proteínas de Insectos/metabolismo , Mucinas/metabolismo , Secuencia de Aminoácidos , Animales , Quitina/química , Dicroismo Circular , Femenino , Hemo/química , Proteínas de Insectos/análisis , Proteínas de Insectos/química , Mucosa Intestinal/metabolismo , Intestinos/química , Intestinos/ultraestructura , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Mucinas/análisis , Mucinas/química , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
Insect Biochem Mol Biol ; 35(9): 947-59, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15978997

RESUMEN

Immuno-screening of an adult Aedes aegypti midgut cDNA expression library with anti-peritrophic matrix antibodies identified cDNAs encoding a novel peritrophic matrix protein, termed Ae. aegypti Adult Peritrophin 50 (Ae-Aper50), and the epithelial cell-surface membrane protein, AEG12. Both genes are expressed exclusively in the midguts of adult female mosquitoes and their expression is strongly induced by blood feeding. Ae-Aper50 has a predicted secretory signal peptide and five chitin-binding domains with intervening mucin-like domains. Localization of Ae-Aper50 to the peritrophic matrix was demonstrated by immuno-electron microscopy. Recombinant Ae-Aper50 expressed in baculovirus-infected insect cells binds chitin in vitro. Site-directed mutagenesis was used to study the role that cysteine residues from a single chitin-binding domain play in the binding to a chitin substrate. Most of the cysteine residues proved to be critical for binding. AEG12 has a putative secretory signal peptide at the amino-terminus and a putative glycosyl-phosphatidylinositol (GPI) anchor signal at its carboxyl-terminus and the protein was localized by immuno-electron microscopy to the midgut epithelial cell microvilli.


Asunto(s)
Aedes/química , Proteínas de Insectos/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Membrana Celular/química , Quitina/química , Tracto Gastrointestinal , Regulación de la Expresión Génica , Biblioteca de Genes , Proteínas de Insectos/biosíntesis , Larva , Datos de Secuencia Molecular , Unión Proteica
19.
J Biol Chem ; 277(43): 40839-43, 2002 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-12167627

RESUMEN

Malaria kills millions of people every year, and new control measures are urgently needed. The recent demonstration that (effector) genes can be introduced into the mosquito germ line to diminish their ability to transmit the malaria parasite offers new hope toward the fight of the disease (Ito, J., Ghosh, A., Moreira, L. A., Wimmer, E. A. & Jacobs-Lorena, M. (2002) Nature, 417, 452-455). Because of the high selection pressure that an effector gene imposes on the parasite population, development of resistant strains is likely to occur. In search of additional antiparasitic effector genes, we have generated transgenic Anopheles stephensi mosquitoes that express the bee venom phospholipase A2 (PLA2) gene from the gut-specific and blood-inducible Anopheles gambiae carboxypeptidase (AgCP) promoter. Northern blot analysis indicated that the PLA2 mRNA is specifically expressed in the guts of transgenic mosquitoes with peak expression at approximately 4 h after blood ingestion. Western blot and immunofluorescence analyses detected PLA2 protein in the midgut epithelia of transgenic mosquitoes from 8 to 24 h after a blood meal. Importantly, transgene expression reduced Plasmodium berghei oocyst formation by 87% on average and greatly impaired transmission of the parasite to naive mice. The results indicate that PLA2 may be used as an additional effector gene to block the development of the malaria parasite in mosquitoes.


Asunto(s)
Animales Modificados Genéticamente/parasitología , Anopheles/parasitología , Venenos de Abeja/enzimología , Fosfolipasas A/fisiología , Plasmodium berghei/crecimiento & desarrollo , Animales , Secuencia de Bases , Northern Blotting , Western Blotting , Clonación Molecular , Cartilla de ADN , Femenino , Datos de Secuencia Molecular , Fosfolipasas A/genética , Fosfolipasas A2 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...