Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiome ; 12(1): 50, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38468305

RESUMEN

BACKGROUND: Antibiotics notoriously perturb the gut microbiota. We treated healthy volunteers either with cefotaxime or ceftriaxone for 3 days, and collected in each subject 12 faecal samples up to day 90. Using untargeted and targeted phenotypic and genotypic approaches, we studied the changes in the bacterial, phage and fungal components of the microbiota as well as the metabolome and the ß-lactamase activity of the stools. This allowed assessing their degrees of perturbation and resilience. RESULTS: While only two subjects had detectable concentrations of antibiotics in their faeces, suggesting important antibiotic degradation in the gut, the intravenous treatment perturbed very significantly the bacterial and phage microbiota, as well as the composition of the metabolome. In contrast, treatment impact was relatively low on the fungal microbiota. At the end of the surveillance period, we found evidence of resilience across the gut system since most components returned to a state like the initial one, even if the structure of the bacterial microbiota changed and the dynamics of the different components over time were rarely correlated. The observed richness of the antibiotic resistance genes repertoire was significantly reduced up to day 30, while a significant increase in the relative abundance of ß-lactamase encoding genes was observed up to day 10, consistent with a concomitant increase in the ß-lactamase activity of the microbiota. The level of ß-lactamase activity at baseline was positively associated with the resilience of the metabolome content of the stools. CONCLUSIONS: In healthy adults, antibiotics perturb many components of the microbiota, which return close to the baseline state within 30 days. These data suggest an important role of endogenous ß-lactamase-producing anaerobes in protecting the functions of the microbiota by de-activating the antibiotics reaching the colon. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Resiliencia Psicológica , Adulto , Humanos , Microbioma Gastrointestinal/genética , beta-Lactamasas/genética , beta-Lactamas/farmacología , Voluntarios Sanos , Antibacterianos , Bacterias/genética , Heces/microbiología
2.
J Med Chem ; 65(24): 16392-16419, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36450011

RESUMEN

Metallo-ß-lactamases (MBLs) contribute to the resistance of Gram-negative bacteria to carbapenems, last-resort antibiotics at hospital, and MBL inhibitors are urgently needed to preserve these important antibacterial drugs. Here, we describe a series of 1,2,4-triazole-3-thione-based inhibitors displaying an α-amino acid substituent, which amine was mono- or disubstituted by (hetero)aryl groups. Compounds disubstituted by certain nitrogen-containing heterocycles showed submicromolar activities against VIM-type enzymes and strong NDM-1 inhibition (Ki = 10-30 nM). Equilibrium dialysis, native mass spectrometry, isothermal calorimetry (ITC), and X-ray crystallography showed that the compounds inhibited both VIM-2 and NDM-1 at least partially by stripping the catalytic zinc ions. These inhibitors also displayed a very potent synergistic activity with meropenem (16- to 1000-fold minimum inhibitory concentration (MIC) reduction) against VIM-type- and NDM-1-producing ultraresistant clinical isolates, including Enterobacterales and Pseudomonas aeruginosa. Furthermore, selected compounds exhibited no or moderate toxicity toward HeLa cells, favorable absorption, distribution, metabolism, excretion (ADME) properties, and no or modest inhibition of several mammalian metalloenzymes.


Asunto(s)
Tionas , Inhibidores de beta-Lactamasas , Humanos , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/química , Tionas/farmacología , Células HeLa , Antibacterianos/farmacología , Antibacterianos/química , beta-Lactamasas/metabolismo , Pruebas de Sensibilidad Microbiana
3.
mBio ; 13(6): e0288022, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36448778

RESUMEN

Antibiotics disturb the intestinal bacterial microbiota, leading to gut dysbiosis and an increased risk for the overgrowth of opportunistic pathogens. It is not fully understood to what extent antibiotics affect the fungal fraction of the intestinal microbiota, the mycobiota. There is no report of the direct role of antibiotics in the overgrowth in healthy humans of the opportunistic pathogenic yeast Candida albicans. Here, we have explored the gut mycobiota of 22 healthy subjects before, during, and up to 6 months after a 3-day regimen of third-generation cephalosporins (3GCs). Using ITS1-targeted metagenomics, we highlighted the strong intra- and interindividual diversity of the healthy gut mycobiota. With a specific quantitative approach, we showed that C. albicans prevalence was much higher than previously reported, with all subjects but one being carriers of C. albicans, although with highly variable burdens. 3GCs significantly altered the mycobiota composition and the fungal load was increased both at short and long term. Both C. albicans relative and absolute abundances were increased but 3GCs did not reduce intersubject variability. Variations in C. albicans burden in response to 3GC treatment could be partly explained by changes in the levels of endogenous fecal ß-lactamase activity, with subjects characterized by a high increase of ß-lactamase activity displaying a lower increase of C. albicans levels. A same antibiotic treatment might thus affect differentially the gut mycobiota and C. albicans carriage, depending on the treated subject, suggesting a need to adjust the current risk factors for C. albicans overgrowth after a ß-lactam treatment. IMPORTANCE Fungal infections are redoubtable healthcare-associated complications in immunocompromised patients. Particularly, the commensal intestinal yeast Candida albicans causes invasive infections in intensive care patients and is, therefore, associated with high mortality. These infections are preceded by an intestinal expansion of C. albicans before its translocation into the bloodstream. Antibiotics are a well-known risk factor for C. albicans overgrowth but the impact of antibiotic-induced dysbiosis on the human gut mycobiota-the fungal microbiota-and the understanding of the mechanisms involved in C. albicans overgrowth in humans are very limited. Our study shows that antibiotics increase the fungal proportion in the gut and disturb the fungal composition, especially C. albicans, in a subject-dependent manner. Indeed, variations across subjects in C. albicans burden in response to ß-lactam treatment could be partly explained by changes in the levels of endogenous fecal ß-lactamase activity. This highlighted a potential new key factor for C. albicans overgrowth. Thus, the significance of our research is in providing a better understanding of the factors behind C. albicans intestinal overgrowth, which might lead to new means to prevent life-threatening secondary infections.


Asunto(s)
Candida albicans , Disbiosis , Humanos , Candida albicans/fisiología , Monobactamas , Antibacterianos , beta-Lactamasas
4.
Eur J Clin Microbiol Infect Dis ; 38(6): 1113-1122, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30834995

RESUMEN

Nontuberculous mycobacteria are the most frequent cause of chronic cervical lymphadenitis in childhood. The aim of the study was to evaluate the performance of IL-2, IL-17, and INF-γ in-house enzyme-linked immunospot assays using a Mycobacterium avium lysate, in order to identify a noninvasive diagnostic method of nontuberculous mycobacteria infection. Children with subacute and chronic lymphadenopathies or with a previous diagnosis of nontuberculous mycobacteria lymphadenitis were prospectively enrolled in the study. Sixty children with lymphadenitis were included in our study: 16 with confirmed infection (group 1), 30 probable infected (group 2) and 14 uninfected (group 3). Significantly higher median cytokine values were found in group 1 vs group 2, in group 1 vs group 3, and in group 2 vs group 3 considering IL-2-based enzyme-linked immunospot assay (p = 0.015, p < 0.001, p = 0.004, respectively). INF-γ-based enzyme-linked immunospot assay results were significantly higher in group 2 vs group 3 (p = 0.010). Differences between infected and uninfected children were not significant considering IL-17 assays (p = 0.431). Mycobacterium avium lysate IL-2 and INF-γ-based enzyme-linked immunospot assays seem to be promising noninvasive diagnostic techniques for discriminating children with nontuberculous mycobacteria lymphadenitis and noninfected subjects.


Asunto(s)
Citocinas/sangre , Ensayo de Immunospot Ligado a Enzimas/normas , Linfadenitis/diagnóstico , Complejo Mycobacterium avium/inmunología , Infección por Mycobacterium avium-intracellulare/diagnóstico , Adolescente , Biomarcadores/sangre , Niño , Preescolar , Pruebas Diagnósticas de Rutina , Femenino , Humanos , Lactante , Recién Nacido , Interferón gamma/sangre , Interleucina-17/sangre , Interleucina-2/sangre , Linfadenitis/sangre , Masculino , Infección por Mycobacterium avium-intracellulare/sangre , Estudios Prospectivos , Curva ROC
5.
Appl Environ Microbiol ; 81(7): 2433-44, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25616800

RESUMEN

The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups.


Asunto(s)
Biota , Cilióforos/clasificación , Cilióforos/genética , Rumen/parasitología , Animales , Cilióforos/citología , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Microscopía , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...