Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Transl Med ; 12(7): e937, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35808806

RESUMEN

BACKGROUND: Metastatic breast cancer poses great challenge in cancer treatment. N-dihydrogalactochitosan (GC) is a novel immunoadjuvant that stimulates systemic immune responses when administered intratumourally following local tumour ablation. A combination of photothermal therapy (PTT) and GC, referred to as localized ablative immunotherapy (LAIT), extended animal survival and generates an activated B cell phenotype in MMTV-PyMT mouse mammary tumour microenvironment (TME). However, how T cell populations respond to LAIT remains to be elucidated. METHODS: Using depletion antibodies, we studied the contributions of CD8+ and CD4+ T cells to the therapeutic effect of LAIT. Using single-cell RNA-sequencing (scRNAseq), we analysed tumour-infiltrating T cell heterogeneity and dissected their transcriptomes upon treatments of PTT, GC, and LAIT (PTT+GC). RESULTS: Loss of CD8+ T cells after LAIT abrogated the therapeutic benefits of LAIT. Ten days after treatment, proportions of CD8+ and CD4+ T cells in untreated TME were 19.2% and 23.0%, respectively. Upon LAIT, both proportions were increased to 25.5% and 36.2%, respectively. In particular, LAIT increased the proportions of naïve and memory cells from a resting state to an activated state. LAIT consistently induced the expression of co-stimulatory molecules, type I IFN responsive genes, and a series of antitumor cytokines, Ifng, Tnf, Il1, and Il17 in CD8+ and CD4+ T cells. LAIT also induced immune checkpoints Pdcd1, Ctla4, and Lag3 expression, consistent with T cell activation. Relevant to clinical translation, LAIT also upregulated genes in CD8+ and CD4+ T cells that positively correlated with extended survival of breast cancer patients. CONCLUSIONS: Overall, our results reveal that LAIT prompts immunological remodelling of T cells by inducing broad proinflammatory responses and inhibiting suppressive signalling to drive antitumour immunity.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Acetilglucosamina/análogos & derivados , Adyuvantes Inmunológicos/farmacología , Animales , Ratones , Análisis de Secuencia de ARN , Microambiente Tumoral
2.
Theranostics ; 12(2): 639-656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34976205

RESUMEN

Rationale: B cells have emerged as key regulators in protective cancer immunity. However, the activation pathways induced in B cells during effective immunotherapy are not well understood. Methods: We used a novel localized ablative immunotherapy (LAIT), combining photothermal therapy (PTT) with intra-tumor delivery of the immunostimulant N-dihydrogalactochitosan (GC), to treat mice bearing mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT). We used single-cell RNA sequencing to compare the transcriptional changes induced by PTT, GC and PTT+GC in B cells within the tumor microenvironment (TME). Results: LAIT significantly increased survival in the tumor-bearing mice, compared to the treatment by PTT and GC alone. We found that PTT, GC and PTT+GC increased the proportion of tumor-infiltrating B cells and induced gene expression signatures associated with B cell activation. Both GC and PTT+GC elevated gene expression associated with antigen presentation, whereas GC elevated transcripts that regulate B cell activation and GTPase function and PTT+GC induced interferon response genes. Trajectory analysis, where B cells were organized according to pseudotime progression, revealed that both GC and PTT+GC induced the differentiation of B cells from a resting state towards an effector phenotype. The analyses confirmed upregulated interferon signatures in the differentiated tumor-infiltrating B cells following treatment by PTT+GC but not by GC. We also observed that breast cancer patients had significantly longer survival time if they had elevated expression of genes in B cells that were induced by PTT+GC therapy in the mouse tumors. Conclusion: Our findings show that the combination of local ablation and local application of immunostimulant initiates the activation of interferon signatures and antigen-presentation in B cells which is associated with positive clinical outcomes for breast cancer. These findings broaden our understanding of LAIT's regulatory roles in remodeling TME and shed light on the potentials of B cell activation in clinical applications.


Asunto(s)
Presentación de Antígeno , Linfocitos B/inmunología , Inmunoterapia , Interferones/metabolismo , Neoplasias Mamarias Experimentales/inmunología , Animales , Linfocitos B/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/mortalidad , Neoplasias Mamarias Experimentales/terapia , Ratones , Transcriptoma
3.
Case Rep Pediatr ; 2021: 6655330, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936829

RESUMEN

Bacterial coinfection and COVID-19 have been reported in pediatric populations. We describe a case of Sydenham's chorea, which is exceedingly rare in developed countries, with concurrent COVID-19. Discussed here is the clinical course of an 8-year-old COVID-positive female with pure Sydenham's chorea and subclinical carditis from acute rheumatic fever. To our knowledge, there are no documented reports of acute rheumatic fever in a pediatric patient with coexisting COVID-19 infection.

4.
Oncoimmunology ; 9(1): 1685300, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32002300

RESUMEN

Cancer immunotherapy continues to make headway as a treatment for advanced stage tumors, revealing an urgent need to understand the fundamentals of anti-tumor immune responses. Noteworthy is a scarcity of data pertaining to the breadth and specificity of tumor-specific T cell responses in metastatic breast cancer. Autochthonous transgenic models of breast cancer display spontaneous metastasis in the FVB/NJ mouse strain, yet a lack of knowledge regarding tumor-bound MHC/peptide immune epitopes in this mouse model limits the characterization of tumor-specific T cell responses, and the mechanisms that regulate T cell responses in the metastatic setting. We recently generated the NetH2pan prediction tool for murine class I MHC ligands by building an FVB/NJ H-2q ligand database and combining it with public information from six other murine MHC alleles. Here, we deployed NetH2pan in combination with an advanced proteomics workflow to identify immunogenic T cell epitopes in the MMTV-PyMT transgenic model for metastatic breast cancer. Five unique MHC I/PyMT epitopes were identified. These tumor-specific epitopes were confirmed to be presented by the class I MHC of primary MMTV-PyMT tumors and their T cell immunogenicity was validated. Vaccination using a DNA construct encoding a truncated PyMT protein generated CD8 + T cell responses to these MHC class I/peptide complexes and prevented tumor development. In sum, we have established an MHC-ligand discovery pipeline in FVB/NJ mice, identified and tracked H-2Dq/PyMT neoantigen-specific T cells, and developed a vaccine that prevents tumor development in this metastatic model of breast cancer.


Asunto(s)
Antígenos de Neoplasias , Neoplasias de la Mama , Animales , Neoplasias de la Mama/genética , Modelos Animales de Enfermedad , Epítopos de Linfocito T/genética , Femenino , Humanos , Ratones , Ratones Endogámicos , Metástasis de la Neoplasia
5.
Cancer Immunol Res ; 6(6): 636-644, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29615400

RESUMEN

With the advancement of personalized cancer immunotherapies, new tools are needed to identify tumor antigens and evaluate T-cell responses in model systems, specifically those that exhibit clinically relevant tumor progression. Key transgenic mouse models of breast cancer are generated and maintained on the FVB genetic background, and one such model is the mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT) mouse-an immunocompetent transgenic mouse that exhibits spontaneous mammary tumor development and metastasis with high penetrance. Backcrossing the MMTV-PyMT mouse from the FVB strain onto a C57BL/6 genetic background, in order to leverage well-developed C57BL/6 immunologic tools, results in delayed tumor development and variable metastatic phenotypes. Therefore, we initiated characterization of the FVB MHC class I H-2q haplotype to establish useful immunologic tools for evaluating antigen specificity in the murine FVB strain. Our study provides the first detailed molecular and immunoproteomic characterization of the FVB H-2q MHC class I alleles, including >8,500 unique peptide ligands, a multiallele murine MHC peptide prediction tool, and in vivo validation of these data using MMTV-PyMT primary tumors. This work allows researchers to rapidly predict H-2 peptide ligands for immune testing, including, but not limited to, the MMTV-PyMT model for metastatic breast cancer. Cancer Immunol Res; 6(6); 636-44. ©2018 AACR.


Asunto(s)
Biología Computacional/métodos , Mapeo Epitopo/métodos , Epítopos/inmunología , Antígenos de Histocompatibilidad/inmunología , Neoplasias/inmunología , Péptidos/inmunología , Programas Informáticos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular Tumoral , Cromatografía Liquida , Modelos Animales de Enfermedad , Femenino , Antígenos H-2/química , Antígenos H-2/genética , Antígenos H-2/inmunología , Haplotipos , Humanos , Ligandos , Neoplasias Mamarias Animales , Neoplasias Mamarias Experimentales , Espectrometría de Masas , Ratones , Unión Proteica
6.
PLoS One ; 10(4): e0124448, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25915545

RESUMEN

Transglutaminases are a superfamily of isoenzymes found in cells and plasma. These enzymes catalyze the formation of ε-N-(γ-glutamyl)-lysyl crosslinks between proteins. Cystamine blocks transglutaminase activity and is used in vitro in human samples and in vivo in mice and rats in studies of coagulation, immune dysfunction, and inflammatory disease. These studies have suggested cystamine blocks fibrin crosslinking and has anti-inflammatory effects, implicating transglutaminase activity in the pathogenesis of several diseases. We measured the effects of cystamine on fibrin crosslinking, tissue factor-triggered plasma clot formation and thrombin generation, and coagulation factor enzymatic activity. At concentrations that blocked fibrin crosslinking, cystamine also inhibited plasma clot formation and reduced thrombin generation. Cystamine inhibited the amidolytic activity of coagulation factor XI and thrombin towards chromogenic substrates. These findings demonstrate that cystamine exhibits anticoagulant activity during coagulation. Given the close relationship between coagulation and inflammation, these findings suggest prior studies that used cystamine to implicate transglutaminase activity in disease pathogenesis warrant re-examination.


Asunto(s)
Anticoagulantes/química , Anticoagulantes/farmacología , Cistamina/química , Cistamina/farmacología , Animales , Coagulación Sanguínea/efectos de los fármacos , Factor XIa/metabolismo , Fibrina/metabolismo , Humanos , Ratones , Ratas , Trombina , Transglutaminasas/antagonistas & inhibidores , Transglutaminasas/metabolismo
7.
Cell Rep ; 6(1): 141-54, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24388747

RESUMEN

Metastasis is the major cause of death in cancer patients, yet the genetic and epigenetic programs that drive metastasis are poorly understood. Here, we report an epigenetic reprogramming pathway that is required for breast cancer metastasis. Concerted differential DNA methylation is initiated by the activation of the RON receptor tyrosine kinase by its ligand, macrophage stimulating protein (MSP). Through PI3K signaling, RON/MSP promotes expression of the G:T mismatch-specific thymine glycosylase MBD4. RON/MSP and MBD4-dependent aberrant DNA methylation results in the misregulation of a specific set of genes. Knockdown of MBD4 reverses methylation at these specific loci and blocks metastasis. We also show that the MBD4 glycosylase catalytic residue is required for RON/MSP-driven metastasis. Analysis of human breast cancers revealed that this epigenetic program is significantly associated with poor clinical outcome. Furthermore, inhibition of Ron kinase activity with a pharmacological agent blocks metastasis of patient-derived breast tumor grafts in vivo.


Asunto(s)
Neoplasias de la Mama/genética , Metilación de ADN , Endodesoxirribonucleasas/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Carcinogénesis/genética , Endodesoxirribonucleasas/genética , Femenino , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Células MCF-7 , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Metástasis de la Neoplasia , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...