Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 12(558)2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848093

RESUMEN

A major sex difference in Alzheimer's disease (AD) is that men with the disease die earlier than do women. In aging and preclinical AD, men also show more cognitive deficits. Here, we show that the X chromosome affects AD-related vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice genetically modified to develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with either gonad, indicating a sex chromosome effect. To dissect whether the absence of a second X chromosome or the presence of a Y chromosome conferred a disadvantage on male mice, we varied sex chromosome dosage. With or without a Y chromosome, hAPP mice with one X chromosome showed worse mortality and deficits than did those with two X chromosomes. Thus, adding a second X chromosome conferred resilience to XY males and XO females. In addition, the Y chromosome, its sex-determining region Y gene (Sry), or testicular development modified mortality in hAPP mice with one X chromosome such that XY males with testicles survived longer than did XY or XO females with ovaries. Furthermore, a second X chromosome conferred resilience potentially through the candidate gene Kdm6a, which does not undergo X-linked inactivation. In humans, genetic variation in KDM6A was linked to higher brain expression and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance to human brain health. Our study suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Animales , Femenino , Masculino , Ratones , Caracteres Sexuales , Testículo , Cromosoma X/genética , Cromosoma Y
2.
J Neurosci ; 38(15): 3680-3688, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29540553

RESUMEN

Hyperacetylation of tau has been implicated in neurodegeneration and cognitive decline in tauopathy brains. The nicotinamide adenosine dinucleotide-dependent class-III protein deacetylase SIRT1 is one of the major enzymes involved in removal of acetyl groups from tau in vitro However, whether SIRT1 regulates acetylation of pathogenic tau and ameliorates tau-mediated pathogenesis remains unclear. Here, we report deacetylating activity of SIRT1 for acetylated Lys174 (K174) of tau in tauP301S transgenic mice with a brain-specific SIRT1 deletion. We show that SIRT1 deficiency leads to exacerbation of premature mortality, synapse loss, and behavioral disinhibition in tauP301S transgenic mice of both sexes. By contrast, SIRT1 overexpression by stereotaxic delivery of adeno-associated virus that encodes SIRT1 into the hippocampus reduces acetylated K174 tau. Furthermore, SIRT1 overexpression significantly attenuates the spread of tau pathology into anatomically connected brain regions of tauP301S transgenic mice of both sexes. These findings suggest the functional importance of SIRT1 in regulating pathogenic tau acetylation and in suppressing the spread of tau pathology in vivoSIGNIFICANCE STATEMENT In neurodegenerative disorders with inclusions of microtubule-associated protein tau, aberrant lysine acetylation of tau plays critical roles in promoting tau accumulation and toxicity. Identifying strategies to deacetylate tau could interfere with disease progression; however, little is known about how pathogenic tau is deacetylated in vivo Here we show that the protein deacetylase SIRT1 reduces tau acetylation in a mouse model of neurodegeneration. SIRT1 deficiency in the brain aggravates synapse loss and behavioral disinhibition, and SIRT1 overexpression ameliorates propagation of tau pathology.


Asunto(s)
Sirtuina 1/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Acetilación , Animales , Femenino , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Masculino , Aprendizaje por Laberinto , Ratones , Sirtuina 1/genética , Transmisión Sináptica , Tauopatías/patología , Tauopatías/fisiopatología
3.
Neuromuscul Disord ; 27(7): 635-645, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28554556

RESUMEN

Enzyme-linked and electrochemiluminescence immunoassays were developed for quantification of amino (N-) terminal fragments of the skeletal muscle protein titin (N-ter titin) and qualified for use in detection of urinary N-ter titin excretion. Urine from normal subjects contained a small but measurable level of N-ter titin (1.0 ± 0.4 ng/ml). A 365-fold increase (365.4 ± 65.0, P = 0.0001) in urinary N-ter titin excretion was seen in Duchene muscular dystrophy (DMD) patients. Urinary N-ter titin was also evaluated in dystrophin deficient rodent models. Mdx mice exhibited low urinary N-ter titin levels at 2 weeks of age followed by a robust and sustained elevation starting at 3 weeks of age, coincident with the development of systemic skeletal muscle damage in this model; fold elevation could not be determined because urinary N-ter titin was not detected in age-matched wild type mice. Levels of serum creatine kinase and serum skeletal muscle troponin I (TnI) were also low at 2 weeks, elevated at later time points and were significantly correlated with urinary N-ter titin excretion in mdx mice. Corticosteroid treatment of mdx mice resulted in improved exercise performance and lowering of both urinary N-ter titin and serum skeletal muscle TnI concentrations. Low urinary N-ter titin levels were detected in wild type rats (3.0 ± 0.6 ng/ml), while Dmdmdx rats exhibited a 556-fold increase (1652.5 ± 405.7 ng/ml, P = 0.002) (both at 5 months of age). These results suggest that urinary N-ter titin is present at low basal concentrations in normal urine and increases dramatically coincident with muscle damage produced by dystrophin deficiency. Urinary N-ter titin has potential as a facile, non-invasive and translational biomarker for DMD.


Asunto(s)
Conectina/orina , Distrofia Muscular de Duchenne/orina , Adolescente , Corticoesteroides/uso terapéutico , Factores de Edad , Animales , Estudios de Casos y Controles , Niño , Preescolar , Conectina/sangre , Creatina Quinasa/sangre , Estudios Transversales , Humanos , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos mdx , Distrofia Muscular Animal/sangre , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular Animal/orina , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/genética
4.
Nat Commun ; 6: 8897, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26615780

RESUMEN

Maintaining DNA integrity is vital for all cells and organisms. Defective DNA repair may contribute to neurological disorders, including Alzheimer's disease (AD). We found reduced levels of BRCA1, but not of other DNA repair factors, in the brains of AD patients and human amyloid precursor protein (hAPP) transgenic mice. Amyloid-ß oligomers reduced BRCA1 levels in primary neuronal cultures. In wild-type mice, knocking down neuronal BRCA1 in the dentate gyrus caused increased DNA double-strand breaks, neuronal shrinkage, synaptic plasticity impairments, and learning and memory deficits, but not apoptosis. Low levels of hAPP/Amyloid-ß overexpression exacerbated these effects. Physiological neuronal activation increased BRCA1 levels, whereas stimulating predominantly extrasynaptic N-methyl-D-aspartate receptors promoted the proteasomal degradation of BRCA1. We conclude that BRCA1 is regulated by neuronal activity, protects the neuronal genome, and critically supports neuronal integrity and cognitive functions. Pathological accumulation of Aß depletes neuronal BRCA1, which may contribute to cognitive deficits in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Proteína BRCA1/deficiencia , Encéfalo/metabolismo , Reparación del ADN , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Proteína BRCA1/genética , Encéfalo/fisiopatología , Cognición , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo
5.
PLoS One ; 10(5): e0125614, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25933020

RESUMEN

In Alzheimer's disease (AD), an extensive accumulation of extracellular amyloid plaques and intraneuronal tau tangles, along with neuronal loss, is evident in distinct brain regions. Staging of tau pathology by postmortem analysis of AD subjects suggests a sequence of initiation and subsequent spread of neurofibrillary tau tangles along defined brain anatomical pathways. Further, the severity of cognitive deficits correlates with the degree and extent of tau pathology. In this study, we demonstrate that phospho-tau (p-tau) antibodies, PHF6 and PHF13, can prevent the induction of tau pathology in primary neuron cultures. The impact of passive immunotherapy on the formation and spread of tau pathology, as well as functional deficits, was subsequently evaluated with these antibodies in two distinct transgenic mouse tauopathy models. The rTg4510 transgenic mouse is characterized by inducible over-expression of P301L mutant tau, and exhibits robust age-dependent brain tau pathology. Systemic treatment with PHF6 and PHF13 from 3 to 6 months of age led to a significant decline in brain and CSF p-tau levels. In a second model, injection of preformed tau fibrils (PFFs) comprised of recombinant tau protein encompassing the microtubule-repeat domains into the cortex and hippocampus of young P301S mutant tau over-expressing mice (PS19) led to robust tau pathology on the ipsilateral side with evidence of spread to distant sites, including the contralateral hippocampus and bilateral entorhinal cortex 4 weeks post-injection. Systemic treatment with PHF13 led to a significant decline in the spread of tau pathology in this model. The reduction in tau species after p-tau antibody treatment was associated with an improvement in novel-object recognition memory test in both models. These studies provide evidence supporting the use of tau immunotherapy as a potential treatment option for AD and other tauopathies.


Asunto(s)
Enfermedad de Alzheimer/terapia , Anticuerpos Monoclonales/farmacología , Trastornos del Conocimiento/terapia , Inmunización Pasiva , Fosfoproteínas/farmacología , Proteínas tau/antagonistas & inhibidores , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/inmunología , Corteza Cerebral/patología , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/inmunología , Trastornos del Conocimiento/patología , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Regulación de la Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Hipocampo/patología , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/inmunología , Neuronas/patología , Cultivo Primario de Células , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/efectos adversos , Transducción de Señal , Resultado del Tratamiento , Proteínas tau/genética , Proteínas tau/inmunología
6.
Nat Neurosci ; 18(3): 423-34, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25622143

RESUMEN

Astrocytes express a variety of G protein-coupled receptors and might influence cognitive functions, such as learning and memory. However, the roles of astrocytic Gs-coupled receptors in cognitive function are not known. We found that humans with Alzheimer's disease (AD) had increased levels of the Gs-coupled adenosine receptor A2A in astrocytes. Conditional genetic removal of these receptors enhanced long-term memory in young and aging mice and increased the levels of Arc (also known as Arg3.1), an immediate-early gene that is required for long-term memory. Chemogenetic activation of astrocytic Gs-coupled signaling reduced long-term memory in mice without affecting learning. Like humans with AD, aging mice expressing human amyloid precursor protein (hAPP) showed increased levels of astrocytic A2A receptors. Conditional genetic removal of these receptors enhanced memory in aging hAPP mice. Together, these findings establish a regulatory role for astrocytic Gs-coupled receptors in memory and suggest that AD-linked increases in astrocytic A2A receptor levels contribute to memory loss.


Asunto(s)
Astrocitos/metabolismo , Regulación de la Expresión Génica/fisiología , Memoria a Largo Plazo/fisiología , Receptor de Adenosina A2A/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Transducción de Señal/fisiología , Enfermedad de Alzheimer/patología , Animales , Animales Recién Nacidos , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Indoles/farmacología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptor de Adenosina A2A/genética , Receptores de Serotonina 5-HT4/genética , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Antagonistas de la Serotonina/farmacología , Sulfonamidas/farmacología
7.
J Neurosci ; 35(2): 807-18, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25589773

RESUMEN

Aging is the predominant risk factor for neurodegenerative diseases. One key phenotype as the brain ages is an aberrant innate immune response characterized by proinflammation. However, the molecular mechanisms underlying aging-associated proinflammation are poorly defined. Whether chronic inflammation plays a causal role in cognitive decline in aging and neurodegeneration has not been established. Here we report a mechanistic link between chronic inflammation and aging microglia and a causal role of aging microglia in neurodegenerative cognitive deficits. We showed that SIRT1 is reduced with the aging of microglia and that microglial SIRT1 deficiency has a causative role in aging- or tau-mediated memory deficits via IL-1ß upregulation in mice. Interestingly, the selective activation of IL-1ß transcription by SIRT1 deficiency is likely mediated through hypomethylating the specific CpG sites on IL-1ß proximal promoter. In humans, hypomethylation of IL-1ß is strongly associated with chronological age and with elevated IL-1ß transcription. Our findings reveal a novel epigenetic mechanism in aging microglia that contributes to cognitive deficits in aging and neurodegenerative diseases.


Asunto(s)
Envejecimiento/metabolismo , Cognición , Epigénesis Genética , Interleucina-1beta/metabolismo , Microglía/metabolismo , Sirtuina 1/metabolismo , Animales , Estudios de Casos y Controles , Metilación de ADN , Humanos , Interleucina-1beta/genética , Ratones , Sirtuina 1/deficiencia , Sirtuina 1/genética , Tauopatías/metabolismo , Regulación hacia Arriba
8.
PLoS One ; 9(8): e106050, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25153994

RESUMEN

Filamentous inclusions of the microtubule-associated protein, tau, define a variety of neurodegenerative diseases known as tauopathies, including Alzheimer's disease (AD). To better understand the role of tau-mediated effects on pathophysiology and global central nervous system function, we extensively characterized gene expression, pathology and behavior of the rTg4510 mouse model, which overexpresses a mutant form of human tau that causes Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We found that the most predominantly altered gene expression pathways in rTg4510 mice were in inflammatory processes. These results closely matched the causal immune function and microglial gene-regulatory network recently identified in AD. We identified additional gene expression changes by laser microdissecting specific regions of the hippocampus, which highlighted alterations in neuronal network activity. Expression of inflammatory genes and markers of neuronal activity changed as a function of age in rTg4510 mice and coincided with behavioral deficits. Inflammatory changes were tau-dependent, as they were reversed by suppression of the tau transgene. Our results suggest that the alterations in microglial phenotypes that appear to contribute to the pathogenesis of Alzheimer's disease may be driven by tau dysfunction, in addition to the direct effects of beta-amyloid.


Asunto(s)
Enfermedad de Alzheimer/genética , Expresión Génica/genética , Redes Reguladoras de Genes/genética , Inflamación/genética , Proteínas tau/genética , Animales , Cromosomas Humanos Par 17/genética , Modelos Animales de Enfermedad , Femenino , Demencia Frontotemporal/genética , Hipocampo/metabolismo , Humanos , Ratones , Microglía/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Enfermedades Neurodegenerativas/genética , Neuronas/metabolismo , Trastornos Parkinsonianos/genética
9.
Nat Neurosci ; 16(5): 613-21, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23525040

RESUMEN

We show that a natural behavior, exploration of a novel environment, causes DNA double-strand breaks (DSBs) in neurons of young adult wild-type mice. DSBs occurred in multiple brain regions, were most abundant in the dentate gyrus, which is involved in learning and memory, and were repaired within 24 h. Increasing neuronal activity by sensory or optogenetic stimulation increased neuronal DSBs in relevant but not irrelevant networks. Mice transgenic for human amyloid precursor protein (hAPP), which simulate key aspects of Alzheimer's disease, had increased neuronal DSBs at baseline and more severe and prolonged DSBs after exploration. Interventions that suppress aberrant neuronal activity and improve learning and memory in hAPP mice normalized their levels of DSBs. Blocking extrasynaptic NMDA-type glutamate receptors prevented amyloid-ß (Aß)-induced DSBs in neuronal cultures. Thus, transient increases in neuronal DSBs occur as a result of physiological brain activity, and Aß exacerbates DNA damage, most likely by eliciting synaptic dysfunction.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Roturas del ADN de Doble Cadena , Neuronas/fisiología , Precursor de Proteína beta-Amiloide/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Channelrhodopsins , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Corticosterona/sangre , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Histonas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Estimulación Luminosa , Quinoxalinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/fisiología , Valina/análogos & derivados , Valina/farmacología , Proteínas tau/genética
10.
Neurobiol Aging ; 34(6): 1523-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23332171

RESUMEN

The microtubule-associated protein tau is expressed throughout the nervous system, most highly in neurons but also in glial cells. Its functions in adult and aging mammals remain to be defined. Previous studies in mouse models found either protective or detrimental effects of genetic tau ablation. Though tau ablation prevented synaptic, network, and cognitive dysfunctions in several models of Alzheimer's disease and made mice more resistant to epileptic seizures, a recent study described a parkinsonian phenotype in aging Tau knockout mice. Here we tested cognition and motor functions in Tau(+/+), Tau(+/-), and Tau(-/-) mice at approximately 1 and 2 years of age. Tau ablation did not impair cognition and caused only minor motor deficits that were much more subtle than those associated with the aging process. Tau ablation caused a mild increase in body weight, which correlated with and might have contributed to some of the motor deficits. However, tau ablation did not cause significant dopaminergic impairments, and dopamine treatment did not improve the motor deficits, suggesting that they do not reflect extrapyramidal dysfunction.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento/psicología , Cognición/fisiología , Dopamina , Trastornos de la Destreza Motora/metabolismo , Proteínas tau/deficiencia , Animales , Dopamina/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos de la Destreza Motora/genética , Proteínas tau/genética
11.
PLoS One ; 7(9): e45881, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029293

RESUMEN

Accumulation of hyperphosphorylated tau in the entorhinal cortex (EC) is one of the earliest pathological hallmarks in patients with Alzheimer's disease (AD). It can occur before significant Aß deposition and appears to "spread" into anatomically connected brain regions. To determine whether this early-stage pathology is sufficient to cause disease progression and cognitive decline in experimental models, we overexpressed mutant human tau (hTauP301L) predominantly in layer II/III neurons of the mouse EC. Cognitive functions remained normal in mice at 4, 8, 12 and 16 months of age, despite early and extensive tau accumulation in the EC. Perforant path (PP) axon terminals within the dentate gyrus (DG) contained abnormal conformations of tau even in young EC-hTau mice, and phosphorylated tau increased with age in both the EC and PP. In old mice, ultrastructural alterations in presynaptic terminals were observed at PP-to-granule cell synapses. Phosphorylated tau was more abundant in presynaptic than postsynaptic elements. Human and pathological tau was also detected within hippocampal neurons of this mouse model. Thus, hTauP301L accumulation predominantly in the EC and related presynaptic pathology in hippocampal circuits was not sufficient to cause robust cognitive deficits within the age range analyzed here.


Asunto(s)
Corteza Entorrinal/metabolismo , Hipocampo/metabolismo , Mutación Missense , Vía Perforante/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Giro Dentado , Corteza Entorrinal/patología , Corteza Entorrinal/fisiopatología , Femenino , Expresión Génica , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Masculino , Aprendizaje por Laberinto , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reconocimiento Visual de Modelos , Vía Perforante/patología , Vía Perforante/fisiopatología , Reconocimiento en Psicología , Sinapsis/metabolismo , Sinapsis/patología , Proteínas tau/genética
12.
Proc Natl Acad Sci U S A ; 109(42): E2895-903, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22869752

RESUMEN

In light of the rising prevalence of Alzheimer's disease (AD), new strategies to prevent, halt, and reverse this condition are needed urgently. Perturbations of brain network activity are observed in AD patients and in conditions that increase the risk of developing AD, suggesting that aberrant network activity might contribute to AD-related cognitive decline. Human amyloid precursor protein (hAPP) transgenic mice simulate key aspects of AD, including pathologically elevated levels of amyloid-ß peptides in brain, aberrant neural network activity, remodeling of hippocampal circuits, synaptic deficits, and behavioral abnormalities. Whether these alterations are linked in a causal chain remains unknown. To explore whether hAPP/amyloid-ß-induced aberrant network activity contributes to synaptic and cognitive deficits, we treated hAPP mice with different antiepileptic drugs. Among the drugs tested, only levetiracetam (LEV) effectively reduced abnormal spike activity detected by electroencephalography. Chronic treatment with LEV also reversed hippocampal remodeling, behavioral abnormalities, synaptic dysfunction, and deficits in learning and memory in hAPP mice. Our findings support the hypothesis that aberrant network activity contributes causally to synaptic and cognitive deficits in hAPP mice. LEV might also help ameliorate related abnormalities in people who have or are at risk for AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Anticonvulsivantes/farmacología , Trastornos del Conocimiento/tratamiento farmacológico , Cognición/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Piracetam/análogos & derivados , Sinapsis/efectos de los fármacos , Enfermedad de Alzheimer/complicaciones , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análisis de Varianza , Animales , Anticonvulsivantes/sangre , Anticonvulsivantes/uso terapéutico , Western Blotting , Trastornos del Conocimiento/etiología , Electroencefalografía , Humanos , Inmunohistoquímica , Levetiracetam , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Red Nerviosa/fisiopatología , Piracetam/sangre , Piracetam/farmacología , Piracetam/uso terapéutico
13.
PLoS One ; 7(7): e40555, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792368

RESUMEN

BACKGROUND: Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear. METHODOLOGY AND PRINCIPAL FINDINGS: We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)--a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity. CONCLUSIONS AND SIGNIFICANCE: Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD.


Asunto(s)
Giro Dentado/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Aprendizaje/fisiología , Memoria/fisiología , Animales , Giro Dentado/citología , Dependovirus/genética , Genes Reporteros , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Memoria a Corto Plazo/fisiología , Ratones , Ratones Transgénicos , Desempeño Psicomotor
14.
Cell ; 149(3): 708-21, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541439

RESUMEN

Alzheimer's disease (AD) results in cognitive decline and altered network activity, but the mechanisms are unknown. We studied human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Electroencephalographic recordings in hAPP mice revealed spontaneous epileptiform discharges, indicating network hypersynchrony, primarily during reduced gamma oscillatory activity. Because this oscillatory rhythm is generated by inhibitory parvalbumin (PV) cells, network dysfunction in hAPP mice might arise from impaired PV cells. Supporting this hypothesis, hAPP mice and AD patients had decreased levels of the interneuron-specific and PV cell-predominant voltage-gated sodium channel subunit Nav1.1. Restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory synaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality. We conclude that reduced Nav1.1 levels and PV cell dysfunction critically contribute to abnormalities in oscillatory rhythms, network synchrony, and memory in hAPP mice and possibly in AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Interneuronas/metabolismo , Aprendizaje , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1 , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Canales de Sodio/metabolismo , Sinapsis
15.
Physiol Behav ; 105(4): 915-24, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22079582

RESUMEN

Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERß), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85-100%) and low (40-60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERß gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice.


Asunto(s)
Receptor alfa de Estrógeno/biosíntesis , Receptor beta de Estrógeno/biosíntesis , Oxitocina/biosíntesis , Receptores de Oxitocina/biosíntesis , Receptores de Vasopresinas/biosíntesis , Reconocimiento en Psicología/fisiología , Conducta Social , Vasopresinas/biosíntesis , Animales , Animales no Consanguíneos , Conducta Animal/fisiología , Encéfalo/metabolismo , Femenino , Expresión Génica , Ratones , Receptores de Progesterona/biosíntesis
16.
J Neurosci ; 31(2): 700-11, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21228179

RESUMEN

Alzheimer's disease (AD), the most common neurodegenerative disorder, is a growing public health problem and still lacks effective treatments. Recent evidence suggests that microtubule-associated protein tau may mediate amyloid-ß peptide (Aß) toxicity by modulating the tyrosine kinase Fyn. We showed previously that tau reduction prevents, and Fyn overexpression exacerbates, cognitive deficits in human amyloid precursor protein (hAPP) transgenic mice overexpressing Aß. However, the mechanisms by which Aß, tau, and Fyn cooperate in AD-related pathogenesis remain to be fully elucidated. Here we examined the synaptic and network effects of this pathogenic triad. Tau reduction prevented cognitive decline induced by synergistic effects of Aß and Fyn. Tau reduction also prevented synaptic transmission and plasticity deficits in hAPP mice. Using electroencephalography to examine network effects, we found that tau reduction prevented spontaneous epileptiform activity in multiple lines of hAPP mice. Tau reduction also reduced the severity of spontaneous and chemically induced seizures in mice overexpressing both Aß and Fyn. To better understand these protective effects, we recorded whole-cell currents in acute hippocampal slices from hAPP mice with and without tau. hAPP mice with tau had increased spontaneous and evoked excitatory currents, reduced inhibitory currents, and NMDA receptor dysfunction. Tau reduction increased inhibitory currents and normalized excitation/inhibition balance and NMDA receptor-mediated currents in hAPP mice. Our results indicate that Aß, tau, and Fyn jointly impair synaptic and network function and suggest that disrupting the copathogenic relationship between these factors could be of therapeutic benefit.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/fisiología , Trastornos del Conocimiento/fisiopatología , Red Nerviosa/fisiología , Proteínas Proto-Oncogénicas c-fyn/fisiología , Sinapsis/fisiología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/mortalidad , Animales , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/psicología , Modelos Animales de Enfermedad , Electroencefalografía , Femenino , Hipocampo/fisiopatología , Técnicas In Vitro , Masculino , Ratones , Ratones Mutantes , Plasticidad Neuronal , Convulsiones/metabolismo , Convulsiones/fisiopatología , Especificidad de la Especie , Transmisión Sináptica , Proteínas tau/genética
17.
Nature ; 469(7328): 47-52, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21113149

RESUMEN

Amyloid-ß oligomers may cause cognitive deficits in Alzheimer's disease by impairing neuronal NMDA-type glutamate receptors, whose function is regulated by the receptor tyrosine kinase EphB2. Here we show that amyloid-ß oligomers bind to the fibronectin repeats domain of EphB2 and trigger EphB2 degradation in the proteasome. To determine the pathogenic importance of EphB2 depletions in Alzheimer's disease and related models, we used lentiviral constructs to reduce or increase neuronal expression of EphB2 in memory centres of the mouse brain. In nontransgenic mice, knockdown of EphB2 mediated by short hairpin RNA reduced NMDA receptor currents and impaired long-term potentiation in the dentate gyrus, which are important for memory formation. Increasing EphB2 expression in the dentate gyrus of human amyloid precursor protein transgenic mice reversed deficits in NMDA receptor-dependent long-term potentiation and memory impairments. Thus, depletion of EphB2 is critical in amyloid-ß-induced neuronal dysfunction. Increasing EphB2 levels or function could be beneficial in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Cognición/fisiología , Receptor EphB2/deficiencia , Receptor EphB2/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Línea Celular , Células Cultivadas , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Humanos , Potenciación a Largo Plazo , Memoria/fisiología , Ratones , Ratones Transgénicos , Plasticidad Neuronal , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Receptor EphB2/química , Receptor EphB2/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
18.
Neuron ; 68(3): 428-41, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21040845

RESUMEN

The entorhinal cortex (EC) is one of the earliest affected, most vulnerable brain regions in Alzheimer's disease (AD), which is associated with amyloid-ß (Aß) accumulation in many brain areas. Selective overexpression of mutant amyloid precursor protein (APP) predominantly in layer II/III neurons of the EC caused cognitive and behavioral abnormalities characteristic of mouse models with widespread neuronal APP overexpression, including hyperactivity, disinhibition, and spatial learning and memory deficits. APP/Aß overexpression in the EC elicited abnormalities in synaptic functions and activity-related molecules in the dentate gyrus and CA1 and epileptiform activity in parietal cortex. Soluble Aß was observed in the dentate gyrus, and Aß deposits in the hippocampus were localized to perforant pathway terminal fields. Thus, APP/Aß expression in EC neurons causes transsynaptic deficits that could initiate the cortical-hippocampal network dysfunction in mouse models and human patients with AD.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Corteza Entorrinal/patología , Hipocampo/patología , Red Nerviosa/patología , Neuronas/efectos de los fármacos , Sinapsis/patología , Enfermedad de Alzheimer/psicología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/fisiología , Animales , Conducta Animal/efectos de los fármacos , Señalización del Calcio/fisiología , Trastornos del Conocimiento/psicología , Progresión de la Enfermedad , Electroencefalografía , Humanos , Inmunohistoquímica , Técnicas In Vitro , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Placa Amiloide/patología
19.
Neurosci Lett ; 474(1): 17-21, 2010 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-20193744

RESUMEN

In the CNS, lipocalin-type prostaglandin D synthase (L-PGDS) is predominantly a non-neuronal enzyme responsible for the production of PGD(2), an endogenous sleep promoting substance. We have previously demonstrated that estradiol differentially regulates L-PGDS transcript levels in the rodent brain. In hypothalamic nuclei, estradiol increases L-PGDS transcript expression, whereas in the ventrolateral preoptic area L-PGDS gene expression is reduced after estradiol treatment. In the present study, we have used an immortalized glioma cell line transfected with a L-PGDS reporter construct and estrogen receptor (ER) alpha and ERbeta expression plasmids to further elucidate the mechanisms underlying estradiol regulation of L-PGDS gene expression. We found that physiologically relevant concentrations of estradiol evoked an inverted U response in cells expressing ERalpha. The most effective concentration of estradiol (10(-11)M) increased the promoter activity 3-fold over baseline. Expression of ERbeta did not increase activity over control and when ERbeta was co-expressed with ERalpha there was a significant attenuation of the promoter activity. While ERalpha significantly increased L-PGDS promoter activity, our previous in vivo studies demonstrate a greater magnitude of change in L-PGDS gene expression in the presences of estradiol. This led us to ask whether estradiol is signaling via a paracrine factor released by the neighboring neurons. Conditioned media from estradiol treated neurons applied to the glioma cell line resulted in a significant 7-fold increase in L-PGDS promoter activity supporting the possibility that neuronal-glial interactions are involved in estradiol regulation of L-PGDS.


Asunto(s)
Estradiol/farmacología , Oxidorreductasas Intramoleculares/biosíntesis , Lipocalinas/biosíntesis , Factores Biológicos/metabolismo , Línea Celular Tumoral , Medios de Cultivo Condicionados , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/fisiología , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/fisiología , Regulación Enzimológica de la Expresión Génica , Humanos , Oxidorreductasas Intramoleculares/genética , Lipocalinas/genética , Neuroglía/metabolismo , Neuronas/metabolismo , Comunicación Paracrina , Transcripción Genética
20.
J Neurosci ; 30(1): 372-81, 2010 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-20053918

RESUMEN

Previous studies suggested that cleavage of the amyloid precursor protein (APP) at aspartate residue 664 by caspases may play a key role in the pathogenesis of Alzheimer's disease. Mutation of this site (D664A) prevents caspase cleavage and the generation of the C-terminal APP fragments C31 and Jcasp, which have been proposed to mediate amyloid-beta (Abeta) neurotoxicity. Here we compared human APP transgenic mice with (B254) and without (J20) the D664A mutation in a battery of tests. Before Abeta deposition, hAPP-B254 and hAPP-J20 mice had comparable hippocampal levels of Abeta(1-42). At 2-3 or 5-7 months of age, hAPP-B254 and hAPP-J20 mice had similar abnormalities relative to nontransgenic mice in spatial and nonspatial learning and memory, elevated plus maze performance, electrophysiological measures of synaptic transmission and plasticity, and levels of synaptic activity-related proteins. Thus, caspase cleavage of APP at position D664 and generation of C31 do not play a critical role in the development of these abnormalities.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Caspasas/metabolismo , Modelos Animales de Enfermedad , Neuronas/metabolismo , Desempeño Psicomotor/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Humanos , Hidrólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Neuronas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...