Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Psychiatr Genet ; 34(1): 24-27, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38108335

RESUMEN

KCNQ2 mutations are a common cause of early-onset epileptic syndromes. They are associated with heterogeneous developmental profiles, from mild to severe cognitive and social impairments that need better characterization. We report a case of an inherited KCNQ2 mutation due to a deletion c.402delC in a heterozygous state, in the exon 3 of the KCNQ2 gene. A 5-year-old boy presented a cluster of sudden-onset generalized tonic-clonic seizures at three months of age, after an unremarkable postnatal period. Multiplex ligation-dependent probe amplification identified a familial mutation after an investigation in the family revealed that this mutation was present on the father's side. The patient was diagnosed with autism and intellectual deficiency in a context of KCNQ2 -encephalopathy. We describe his clinical features in light of current literature. This report highlights the importance of appropriate genetic counseling and psychiatric assessment in planning the medical and social follow-up of a disorder with complex socio-behavioral features.


Asunto(s)
Canal de Potasio KCNQ2 , Convulsiones , Masculino , Humanos , Preescolar , Canal de Potasio KCNQ2/genética , Mutación/genética , Convulsiones/genética , Exones
2.
Clin Genet ; 104(3): 365-370, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37177896

RESUMEN

Loss of function variants in CACNA1A cause a broad spectrum of neurological disorders, including episodic ataxia, congenital or progressive ataxias, epileptic manifestations or developmental delay. Variants located on the AG/GT consensus splice sites are usually considered as responsible of splicing defects, but exonic or intronic variants located outside of the consensus splice site can also lead to abnormal splicing. We investigated the putative consequences on splicing of 11 CACNA1A variants of unknown significance (VUS) identified in patients with episodic ataxia or congenital ataxia. In silico splice predictions were performed and RNA obtained from fibroblasts was analyzed by Sanger sequencing. The presence of abnormal transcripts was confirmed in 10/11 patients, nine of them were considered as deleterious and one remained of unknown significance. Targeted next-generation RNA sequencing was done in a second step to compare the two methods. This method was successful to obtain the full cDNA sequence of CACNA1A. Despite the presence of several isoforms in the fibroblastic cells, it detected most of the abnormally spliced transcripts. In conclusion, RNA sequencing was efficient to confirm the pathogenicity of nine novel CACNA1A variants. Sanger or Next generation methods can be used depending on the facilities and organization of the laboratories.


Asunto(s)
Canales de Calcio , Ataxia Cerebelosa , Humanos , Canales de Calcio/genética , Ataxia/genética , Ataxia Cerebelosa/genética , Análisis de Secuencia de ARN
3.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835074

RESUMEN

Reciprocal translocation (RT) carriers produce a proportion of unbalanced gametes that expose them to a higher risk of infertility, recurrent miscarriage, and fetus or children with congenital anomalies and developmental delay. To reduce these risks, RT carriers can benefit from prenatal diagnosis (PND) or preimplantation genetic diagnosis (PGD). Sperm fluorescence in situ hybridization (spermFISH) has been used for decades to investigate the sperm meiotic segregation of RT carriers, but a recent report indicates a very low correlation between spermFISH and PGD outcomes, raising the question of the usefulness of spermFISH for these patients. To address this point, we report here the meiotic segregation of 41 RT carriers, the largest cohort reported to date, and conduct a review of the literature to investigate global segregation rates and look for factors that may or may not influence them. We confirm that the involvement of acrocentric chromosomes in the translocation leads to more unbalanced gamete proportions, in contrast to sperm parameters or patient age. In view of the dispersion of balanced sperm rates, we conclude that routine implementation of spermFISH is not beneficial for RT carriers.


Asunto(s)
Análisis de Semen , Semen , Humanos , Embarazo , Femenino , Masculino , Hibridación Fluorescente in Situ , Heterocigoto , Translocación Genética , Espermatozoides , Segregación Cromosómica , Meiosis
4.
Clin Genet ; 103(5): 560-565, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36453701

RESUMEN

Hydrops fetalis is a rare disorder associated with significant perinatal complications and a high perinatal mortality of at least 50%. Nonimmune hydrops fetalis (NIHF) is more frequent and results from a wide variety of etiologies. One cause of NIHF is lymphatic malformation 6 (LMPHM6) due to biallelic loss-of-function (LoF) variants in PIEZO1. Most individuals are diagnosed postnatally and only few clinical data are available on fetal presentations. We report six novel biallelic predicted LoF variants in PIEZO1 identified by exome sequencing in six fetuses and one deceased neonate from four unrelated families affected with LMPHM6. During the pregnancy, most cases are revealed by isolated NIHF at second trimester of gestation. At post-mortem examination ascites, pleural effusions and telengectasies can guide the etiological diagnosis. We aim to further describe the perinatal presentation of this condition which could be underdiagnosed.


Asunto(s)
Hidropesía Fetal , Diagnóstico Prenatal , Embarazo , Recién Nacido , Femenino , Humanos , Hidropesía Fetal/diagnóstico , Hidropesía Fetal/genética , Feto , Canales Iónicos/genética
5.
Am J Med Genet A ; 191(1): 52-63, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36196855

RESUMEN

A small but growing body of scientific literature is emerging about clinical findings in patients with 19p13.3 microdeletion or duplication. Recently, a proximal 19p13.3 microduplication syndrome was described, associated with growth delay, microcephaly, psychomotor delay and dysmorphic features. The aim of our study was to better characterize the syndrome associated with duplications in the proximal 19p13.3 region (prox 19p13.3 dup), and to propose a comprehensive analysis of the underlying genomic mechanism. We report the largest cohort of patients with prox 19p13.3 dup through a collaborative study. We collected 24 new patients with terminal or interstitial 19p13.3 duplication characterized by array-based Comparative Genomic Hybridization (aCGH). We performed mapping, phenotype-genotype correlations analysis, critical region delineation and explored three-dimensional chromatin interactions by analyzing Topologically Associating Domains (TADs). We define a new 377 kb critical region (CR 1) in chr19: 3,116,922-3,494,377, GRCh37, different from the previously described critical region (CR 2). The new 377 kb CR 1 includes a TAD boundary and two enhancers whose common target is PIAS4. We hypothesize that duplications of CR 1 are responsible for tridimensional structural abnormalities by TAD disruption and misregulation of genes essentials for the control of head circumference during development, by breaking down the interactions between enhancers and the corresponding targeted gene.


Asunto(s)
Anomalías Múltiples , Microcefalia , Humanos , Hibridación Genómica Comparativa , Anomalías Múltiples/genética , Microcefalia/genética , Síndrome , Estudios de Asociación Genética
6.
Hum Genet ; 141(1): 65-80, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34748075

RESUMEN

Pathogenic variants of the myelin transcription factor-1 like (MYT1L) gene include heterozygous missense, truncating variants and 2p25.3 microdeletions and cause a syndromic neurodevelopmental disorder (OMIM#616,521). Despite enrichment in de novo mutations in several developmental disorders and autism studies, the data on clinical characteristics and genotype-phenotype correlations are scarce, with only 22 patients with single nucleotide pathogenic variants reported. We aimed to further characterize this disorder at both the clinical and molecular levels by gathering a large series of patients with MYT1L-associated neurodevelopmental disorder. We collected genetic information on 40 unreported patients with likely pathogenic/pathogenic MYT1L variants and performed a comprehensive review of published data (total = 62 patients). We confirm that the main phenotypic features of the MYT1L-related disorder are developmental delay with language delay (95%), intellectual disability (ID, 70%), overweight or obesity (58%), behavioral disorders (98%) and epilepsy (23%). We highlight novel clinical characteristics, such as learning disabilities without ID (30%) and feeding difficulties during infancy (18%). We further describe the varied dysmorphic features (67%) and present the changes in weight over time of 27 patients. We show that patients harboring highly clustered missense variants in the 2-3-ZNF domains are not clinically distinguishable from patients with truncating variants. We provide an updated overview of clinical and genetic data of the MYT1L-associated neurodevelopmental disorder, hence improving diagnosis and clinical management of these patients.


Asunto(s)
Variación Genética , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Epilepsia/genética , Trastornos de Alimentación y de la Ingestión de Alimentos/genética , Femenino , Estudios de Asociación Genética , Heterocigoto , Humanos , Lactante , Trastornos del Desarrollo del Lenguaje/genética , Masculino , Obesidad/genética , Fenotipo , Adulto Joven
7.
Prenat Diagn ; 42(1): 118-135, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34894355

RESUMEN

OBJECTIVE: Terminal 6q deletion is a rare genetic condition associated with a neurodevelopmental disorder characterized by intellectual disability and structural brain anomalies. Interestingly, a similar phenotype is observed in patients harboring pathogenic variants in the DLL1 gene. Our study aimed to further characterize the prenatal phenotype of this syndrome as well as to attempt to establish phenotype-genotype correlations. METHOD: We collected ultrasound findings from 22 fetuses diagnosed with a pure 6qter deletion. We reviewed the literature and compared our 22 cases with 14 fetuses previously reported as well as with patients with heterozygous DLL1 pathogenic variants. RESULTS: Brain structural alterations were observed in all fetuses. The most common findings (>70%) were cerebellar hypoplasia, ventriculomegaly, and corpus callosum abnormalities. Gyration abnormalities were observed in 46% of cases. Occasional findings included cerebral heterotopia, aqueductal stenosis, vertebral malformations, dysmorphic features, and kidney abnormalities. CONCLUSION: This is the first series of fetuses diagnosed with pure terminal 6q deletion. Based on our findings, we emphasize the prenatal sonographic anomalies, which may suggest the syndrome. Furthermore, this study highlights the importance of chromosomal microarray analysis to search for submicroscopic deletions of the 6q27 region involving the DLL1 gene in fetuses with these malformations.


Asunto(s)
Proteínas de Unión al Calcio/análisis , Trastornos de los Cromosomas/complicaciones , Proteínas de la Membrana/análisis , Adulto , Proteínas de Unión al Calcio/genética , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 6/genética , Femenino , Humanos , Proteínas de la Membrana/genética , Fenotipo , Embarazo , Estudios Retrospectivos , Trisomía/genética , Virulencia/genética , Virulencia/fisiología
8.
Clin Genet ; 101(3): 307-316, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34866188

RESUMEN

Inverted duplication deletion 8p [invdupdel(8p)] is a complex and rare chromosomal rearrangement that combines a distal deletion and an inverted interstitial duplication of the short arm of chromosome 8. Carrier patients usually have developmental delay and intellectual disability (ID), associated with various cerebral and extra-cerebral malformations. Invdupdel(8p) is the most common recurrent chromosomal rearrangement in ID patients with anomalies of the corpus callosum (AnCC). Only a minority of invdupdel(8p) cases reported in the literature to date had both brain cerebral imaging and chromosomal microarray (CMA) with precise breakpoints of the rearrangements, making genotype-phenotype correlation studies for AnCC difficult. In this study, we report the clinical, radiological, and molecular data from 36 new invdupdel(8p) cases including three fetuses and five individuals from the same family, with breakpoints characterized by CMA. Among those, 97% (n = 32/33) of patients presented with mild to severe developmental delay/ID and 34% had seizures with mean age of onset of 3.9 years (2 months-9 years). Moreover, out of the 24 patients with brain MRI and 3 fetuses with neuropathology analysis, 63% (n = 17/27) had AnCC. We review additional data from 99 previously published patients with invdupdel(8p) and compare data of 17 patients from the literature with both CMA analysis and brain imaging to refine genotype-phenotype correlations for AnCC. This led us to refine a region of 5.1 Mb common to duplications of patients with AnCC and discuss potential candidate genes within this region.


Asunto(s)
Discapacidad Intelectual , Leucoencefalopatías , Deleción Cromosómica , Inversión Cromosómica , Cromosomas Humanos Par 8 , Cuerpo Calloso/diagnóstico por imagen , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Leucoencefalopatías/genética , Fenotipo , Trisomía
9.
Genet Med ; 22(11): 1838-1850, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32694869

RESUMEN

PURPOSE: Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown. METHODS: By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes. RESULTS: Of 20 individuals, 14 showed a recognizable phenotype with recurrent features including epicanthal folds, blepharophimosis, and downturned nasal tip along with variable degree of intellectual disability (or blepharophimosis intellectual disability syndrome [BIS]). In contrast to most NCBRS variants, all SMARCA2 variants associated with BIS are localized outside the helicase domains. Yeast phenotype assays differentiated NCBRS from non-NCBRS SMARCA2 variants. Transcriptomic and DNA methylation signatures differentiated NCBRS from BIS and those with nonspecific phenotype. In the remaining six individuals with nonspecific dysmorphic features, clinical and molecular data did not permit variant reclassification. CONCLUSION: We identified a novel recognizable syndrome named BIS associated with clustered de novo SMARCA2 variants outside the helicase domains, phenotypically and molecularly distinct from NCBRS.


Asunto(s)
Blefarofimosis , Hipotricosis , Discapacidad Intelectual , Facies , Deformidades Congénitas del Pie , Humanos , Discapacidad Intelectual/genética , Fenotipo , Factores de Transcripción/genética
10.
EMBO J ; 39(13): e104163, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484994

RESUMEN

The relationships between impaired cortical development and consequent malformations in neurodevelopmental disorders, as well as the genes implicated in these processes, are not fully elucidated to date. In this study, we report six novel cases of patients affected by BBSOAS (Boonstra-Bosch-Schaff optic atrophy syndrome), a newly emerging rare neurodevelopmental disorder, caused by loss-of-function mutations of the transcriptional regulator NR2F1. Young patients with NR2F1 haploinsufficiency display mild to moderate intellectual disability and show reproducible polymicrogyria-like brain malformations in the parietal and occipital cortex. Using a recently established BBSOAS mouse model, we found that Nr2f1 regionally controls long-term self-renewal of neural progenitor cells via modulation of cell cycle genes and key cortical development master genes, such as Pax6. In the human fetal cortex, distinct NR2F1 expression levels encompass gyri and sulci and correlate with local degrees of neurogenic activity. In addition, reduced NR2F1 levels in cerebral organoids affect neurogenesis and PAX6 expression. We propose NR2F1 as an area-specific regulator of mouse and human brain morphology and a novel causative gene of abnormal gyrification.


Asunto(s)
Factor de Transcripción COUP I/metabolismo , Neocórtex/embriología , Células-Madre Neurales/metabolismo , Lóbulo Occipital/embriología , Atrofias Ópticas Hereditarias/embriología , Lóbulo Parietal/embriología , Animales , Factor de Transcripción COUP I/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Neocórtex/patología , Células-Madre Neurales/patología , Lóbulo Occipital/patología , Atrofias Ópticas Hereditarias/genética , Atrofias Ópticas Hereditarias/patología , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Lóbulo Parietal/patología
12.
Neurogenetics ; 20(3): 145-154, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31209758

RESUMEN

Both copy number losses and gains occur within subtelomeric 9q34 region without common breakpoints. The microdeletions cause Kleefstra syndrome (KS), whose responsible gene is EHMT1. A 9q34 duplication syndrome (9q34 DS) had been reported in literature, but it has never been characterized by a detailed molecular analysis of the gene content and endpoints. To the best of our knowledge, we report on the first patient carrying the smallest 9q34.3 duplication containing EHMT1 as the only relevant gene. We compared him with 21 reported patients described here as carrying 9q34.3 duplications encompassing the entire gene and extending within ~ 3 Mb. By surveying the available clinical and molecular cytogenetic data, we were able to discover that similar neurodevelopmental disorders (NDDs) were shared by patient carriers of even very differently sized duplications. Moreover, some facial features of the 9q34 DS were more represented than those of KS. However, an accurate in silico analysis of the genes mapped in all the duplications allowed us to support EHMT1 as being sufficient to cause a NDD phenotype. Wider patient cohorts are needed to ascertain whether the rearrangements have full causative role or simply confer the susceptibility to NDDs and possibly to identify the cognitive and behavioral profile associated with the increased dosage of EHMT1.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 9 , N-Metiltransferasa de Histona-Lisina/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Hibridación Genómica Comparativa , Bases de Datos Factuales , Femenino , Francia , Dosificación de Gen , Humanos , Hibridación Fluorescente in Situ , Italia , Masculino , Anotación de Secuencia Molecular , Nueva Zelanda , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Síndrome
13.
J Med Genet ; 56(8): 526-535, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30923172

RESUMEN

BACKGROUND: Balanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies. METHODS: Breakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA. RESULTS: Among the 55 patients included (41 reciprocal translocations, 4 inversions, 2 insertions and 8 complex chromosomal rearrangements), we were able to detect 89% of chromosomal rearrangements (49/55). Molecular signatures at the breakpoints suggested that DNA breaks arose randomly and that there was no major influence of repeated elements. Non-homologous end-joining appeared as the main mechanism of repair (55% of rearrangements). A diagnosis could be established in 22/49 patients (44.8%), 15 by gene disruption (KANSL1, FOXP1, SPRED1, TLK2, MBD5, DMD, AUTS2, MEIS2, MEF2C, NRXN1, NFIX, SYNGAP1, GHR, ZMIZ1) and 7 by position effect (DLX5, MEF2C, BCL11B, SATB2, ZMIZ1). In addition, 16 new candidate genes were identified. Systematic gene expression studies further supported these results. We also showed the contribution of topologically associated domain maps to WGS data interpretation. CONCLUSION: Paired-end WGS is a valid strategy and may be used for structural variation characterisation in a clinical setting.


Asunto(s)
Aberraciones Cromosómicas , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Reordenamiento Génico , Estudios de Asociación Genética , Fenotipo , Secuenciación Completa del Genoma , Adolescente , Adulto , Biomarcadores , Niño , Preescolar , Puntos de Rotura del Cromosoma , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Asociación Genética/métodos , Humanos , Lactante , Masculino , Relación Estructura-Actividad , Translocación Genética , Adulto Joven
14.
Clin Genet ; 94(6): 575-580, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30221343

RESUMEN

We report findings from a male fetus of 26 weeks' gestational age with severe isolated intrauterine growth restriction (IUGR). Chromosomal microarray analysis (CMA) on amniotic fluid cells revealed a 1.06-Mb duplication in 19q13.42 inherited from the healthy father. This duplication contains 34 genes including ZNF331, a gene encoding a zinc-finger protein specifically imprinted (paternally expressed) in the placenta. Study of the ZNF331 promoter by methylation-specific-multiplex ligation-dependent probe amplification showed that the duplicated allele was not methylated in the fetus unlike in the father's genome, suggesting both copies of the ZNF331 gene are expressed in the fetus. The anti-ZNF331 immunohistochemical analysis confirmed that ZNF331 was expressed at higher levels in renal and placental tissues from this fetus compared to controls. Interestingly, ZNF331 expression levels in the placenta have previously been reported to inversely correlate with fetal growth parameters. The original observation presented in this report showed that duplication of ZNF331 could be a novel genetic cause of isolated IUGR and underlines the usefulness of CMA to investigate the genetic causes of isolated severe IUGR.


Asunto(s)
Cromosomas Humanos Par 19 , Retardo del Crecimiento Fetal/diagnóstico , Retardo del Crecimiento Fetal/genética , Duplicación de Gen , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Impresión Genómica , Adulto , Biopsia , Proteínas de Unión al ADN/genética , Epigénesis Genética , Femenino , Estudios de Asociación Genética/métodos , Pruebas Genéticas , Humanos , Inmunohistoquímica , Proteínas de Neoplasias/genética , Embarazo , Ultrasonografía Prenatal
15.
Basic Clin Androl ; 28: 5, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760927

RESUMEN

BACKGROUND: Robertsonian translocations (RobT) are common structural chromosome rearrangements where carriers display a majority of chromosomally balanced spermatozoa from alternate segregation mode. According to some monotony observed in the rates of balanced segregation, is sperm FISH analysis obsolete for RobT carriers? METHODS: Retrospective cohort research study on 23 patients analyzed in our center from 2003 to 2017 and compared to the data of 187 patients in literature from 1983 to 2017.Robertsonian translocation carriers were divided in six groups according to the chromosomes involved in the translocation: 9 patients from our center and 107 from literature carrying 45,XY,der(13;14) karyotype, 3 and 35 patients respectively with 45,XY,der(14;21), 5 and 11 patients respectively with 45,XY,der(13;15), 4 and 7 patients respectively with 45,XY,der(14;15), 1 and 4 patients respectively with 45,XY,der(13;22),and 1 and 10 patients respectively with 45,XY,der(14;22). RESULTS: Alternate segregation mode is predominant in our group of Robertsonian translocation carriers with 73.45% ±8.05 of balanced spermatozoa (min 50.92%; max 89.99%). These results are compliant with the data from literature for all translocations types (p > 0.05) and are consistent among the different types of Robertsonian translocations (p > 0.05) except for der(13;15) that exhibit lower balanced spermatozoa rates (p < 0.05 versus der(13;14), der(14;21), (13;21) and der(15;22)). Normozoospermic patients also display a significantly (p < 0.01) higher rate of balanced sperm cells than patients with abnormal seminograms whatever the defect implied. CONCLUSIONS: According to the discrepancies observed between der(13;15) and all the other Rob T carriers, the differences observed among patients presenting normal and abnormal sperm parameters and the input in genetical counselling, sperm FISH does not seem obsolete for these patients. Moreover, it seems important to collect more data for rare RobT.


CONTEXTE: Le mode de ségrégation chromosomique le plus fréquemment observé chez les patients porteurs de translocation robertsonienne est. un mode équilibré. Les données semblent varier peu selon la translocation analysée. La relative constance des résultats dans le cas de ces translocations robertsoniennes rend elle inutile ces analyses chromosomiques pour ces patients? PATIENTS ET MÉTHODES: Nous avons analysé de façon rétrospective les données spermatiques et de ségrégation méiotique de 23 patients porteurs de translocation robertsonienne, de 2003 à 2017 et comparé les résultats observés à ceux décrits dans la littérature pour 187 patients. RÉSULTATS: Le mode de ségrégation alterne est. prépondérant dans notre série de patients avec 73.45% ±8.05 de spermatozoïdes équilibrés (min 50.92%; max 89.99%). Ces résultats sont en accord avec les données de la littérature, toutes translocations confondues et selon le type de translocation (p > 0.05) sauf pour la translocation der(13;15) où ces taux sont significativement plus faibles (p < 0.05 vs der(13;14), der(14;21), (13;21) et der(15;22)). Nous observons également des taux de spermatozoïdes équilibrés significativement plus élevés chez les patients à spermogramme normal (p < 0.01). CONCLUSIONS: Les différences observées dans les taux d'aneuploïdies entre les translocations der(13;15) et les autres translocations robertsoniennes et entre les porteurs de translocation à spermogramme normal ou altéré, et l'utilité de ces données dans le conseil génétique conduisent à poursuivre l'analyse systématique de la ségrégation méiotique pour les patients porteurs de translocations robertsoniennes et ceci particulièrement pour les translocations rares.

16.
Soins Pediatr Pueric ; 39(302): 36-39, 2018.
Artículo en Francés | MEDLINE | ID: mdl-29747770

RESUMEN

The life expectancy of people with trisomy 21 has increased over recent decades. More than half live over 55 years today, compared to just 9 years in 1929. This progress is thanks to easier access to care and improved medical diagnoses as well as greater physical and psychological stimulation. Continued monitoring remains essential but it becomes less systematic as children grow up, despite the risk of certain complications increasing from puberty. Consultations devoted to trisomy 21 aim to facilitate access to care through an adapted care pathway.


Asunto(s)
Atención a la Salud , Síndrome de Down , Derivación y Consulta , Adolescente , Niño , Humanos , Adulto Joven
17.
J Med Genet ; 55(6): 359-371, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29618507

RESUMEN

The Xq28 duplication involving the MECP2 gene (MECP2 duplication) has been mainly described in male patients with severe developmental delay (DD) associated with spasticity, stereotypic movements and recurrent infections. Nevertheless, only a few series have been published. We aimed to better describe the phenotype of this condition, with a focus on morphological and neurological features. Through a national collaborative study, we report a large French series of 59 affected males with interstitial MECP2 duplication. Most of the patients (93%) shared similar facial features, which evolved with age (midface hypoplasia, narrow and prominent nasal bridge, thick lower lip, large prominent ears), thick hair, livedo of the limbs, tapered fingers, small feet and vasomotor troubles. Early hypotonia and global DD were constant, with 21% of patients unable to walk. In patients able to stand, lower limbs weakness and spasticity led to a singular standing habitus: flexion of the knees, broad-based stance with pseudo-ataxic gait. Scoliosis was frequent (53%), such as divergent strabismus (76%) and hypermetropia (54%), stereotypic movements (89%), without obvious social withdrawal and decreased pain sensitivity (78%). Most of the patients did not develop expressive language, 35% saying few words. Epilepsy was frequent (59%), with a mean onset around 7.4 years of age, and often (62%) drug-resistant. Other medical issues were frequent: constipation (78%), and recurrent infections (89%), mainly lung. We delineate the clinical phenotype of MECP2 duplication syndrome in a large series of 59 males. Pulmonary hypertension appeared as a cause of early death in these patients, advocating its screening early in life.


Asunto(s)
Exotropía/genética , Hipertensión Pulmonar/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína 2 de Unión a Metil-CpG/genética , Adolescente , Adulto , Niño , Preescolar , Cromosomas Humanos X/genética , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Epilepsia/complicaciones , Epilepsia/genética , Epilepsia/fisiopatología , Exotropía/complicaciones , Exotropía/fisiopatología , Francia/epidemiología , Humanos , Hiperopía/complicaciones , Hiperopía/genética , Hiperopía/fisiopatología , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/fisiopatología , Lactante , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/fisiopatología , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/complicaciones , Discapacidad Intelectual Ligada al Cromosoma X/fisiopatología , Linaje , Fenotipo , Trastornos Somatosensoriales/genética , Trastornos Somatosensoriales/fisiopatología , Trastorno de Movimiento Estereotipado/complicaciones , Trastorno de Movimiento Estereotipado/genética , Trastorno de Movimiento Estereotipado/fisiopatología , Adulto Joven
18.
NPJ Genom Med ; 2: 32, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29263841

RESUMEN

Phelan-McDermid syndrome (PMS) is characterized by a variety of clinical symptoms with heterogeneous degrees of severity, including intellectual disability (ID), absent or delayed speech, and autism spectrum disorders (ASD). It results from a deletion of the distal part of chromosome 22q13 that in most cases includes the SHANK3 gene. SHANK3 is considered a major gene for PMS, but the factors that modulate the severity of the syndrome remain largely unknown. In this study, we investigated 85 patients with different 22q13 rearrangements (78 deletions and 7 duplications). We first explored the clinical features associated with PMS, and provide evidence for frequent corpus callosum abnormalities in 28% of 35 patients with brain imaging data. We then mapped several candidate genomic regions at the 22q13 region associated with high risk of clinical features, and suggest a second locus at 22q13 associated with absence of speech. Finally, in some cases, we identified additional clinically relevant copy-number variants (CNVs) at loci associated with ASD, such as 16p11.2 and 15q11q13, which could modulate the severity of the syndrome. We also report an inherited SHANK3 deletion transmitted to five affected daughters by a mother without ID nor ASD, suggesting that some individuals could compensate for such mutations. In summary, we shed light on the genotype-phenotype relationship of patients with PMS, a step towards the identification of compensatory mechanisms for a better prognosis and possibly treatments of patients with neurodevelopmental disorders.

19.
J Med Genet ; 54(7): 502-510, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28270404

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) represent a significant healthcare burden since it is the primary cause of chronic kidney in children. CNVs represent a recurrent molecular cause of CAKUT but the culprit gene remains often elusive. Our study aimed to define the gene responsible for CAKUT in patients with an 1q23.3q24.1 microdeletion. METHODS: We describe eight patients presenting with CAKUT carrying an 1q23.3q24.1 microdeletion as identified by chromosomal microarray analysis (CMA). Clinical features were collected, especially the renal and urinary tract phenotype, and extrarenal features. We characterised PBX1 expression and localisation in fetal and adult kidneys using quantitative RT-PCR and immunohistochemistry. RESULTS: We defined a 276-kb minimal common region (MCR) that only overlaps with the PBX1 gene. All eight patients presented with syndromic CAKUT. CAKUT were mostly bilateral renal hypoplasia (75%). The most frequent extrarenal symptoms were developmental delay and ear malformations. We demonstrate that PBX1 is strongly expressed in fetal kidneys and brain and expression levels decreased in adult samples. In control fetal kidneys, PBX1 was localised in nuclei of medullary, interstitial and mesenchymal cells, whereas it was present in endothelial cells in adult kidneys. CONCLUSIONS: Our results indicate that PBX1 haploinsufficiency leads to syndromic CAKUT as supported by the Pbx1-null mice model. Correct PBX1 dosage appears to be critical for normal nephrogenesis and seems important for brain development in humans. CMA should be recommended in cases of fetal renal anomalies to improve genetic counselling and pregnancy management.


Asunto(s)
Haploinsuficiencia/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Niño , Preescolar , Femenino , Feto/metabolismo , Genoma Humano , Humanos , Lactante , Riñón/anomalías , Riñón/embriología , Riñón/metabolismo , Riñón/patología , Masculino , Síndrome
20.
Genet Med ; 19(6): 701-710, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27906199

RESUMEN

PURPOSE: To determine whether duplication of the ARID1A gene is responsible for a new recognizable syndrome. METHODS: We describe four patients with a 1p36.11 microduplication involving ARID1A as identified by array-comparative genomic hybridization . We performed comparative transcriptomic analysis of patient-derived fibroblasts using RNA sequencing and evaluated the impact of ARID1A duplication on the cell cycle using fluorescence-activated cell sorting. Functional relationships between differentially expressed genes were investigated with ingenuity pathway analysis (IPA). RESULTS: Combining the genomic data, we defined a small (122 kb), minimally critical region that overlaps the full ARID1A gene. The four patients shared a strikingly similar phenotype that included intellectual disability and microcephaly. Transcriptomic analysis revealed the deregulated expression of several genes previously linked to microcephaly and developmental disorders as well as the involvement of signaling pathways relevant to microcephaly, among which the polo-like kinase (PLK) pathway was especially notable. Cell-cycle analysis of patient-derived fibroblasts showed a significant increase in the proportion of cells in G1 phase at the expense of G2-M cells. CONCLUSION: Our study reports a new microduplication syndrome involving the ARID1A gene. This work is the first step in clarifying the pathophysiological mechanism that links changes in the gene dosage of ARID1A with intellectual disability and microcephaly.Genet Med advance online publication 01 December 2016.


Asunto(s)
Cromosomas Humanos Par 1 , Duplicación de Gen , Discapacidad Intelectual/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Proteínas de Unión al ADN , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...