Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 91(7): e0054922, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37255426

RESUMEN

It has been widely appreciated that numerous bacterial species express chitinases for the purpose of degrading environmental chitin. However, chitinases and chitin-binding proteins are also expressed by pathogenic bacterial species during infection even though mammals do not produce chitin. Alternative molecular targets are therefore likely present within the host. Here, we will describe our current understanding of chitinase/chitin-binding proteins as virulence factors that promote bacterial colonization and infection. The targets of these chitinases in the host have been shown to include immune system components, mucins, and surface glycans. Bacterial chitinases have also been shown to interact with other microorganisms, targeting the peptidoglycan or chitin in the bacterial and fungal cell wall, respectively. This review highlights that even though the name "chitinase" implies activity toward chitin, chitinases can have a wide diversity of targets, including ones relevant to host infection. Chitinases may therefore be useful as a target of future anti-infective therapeutics.


Asunto(s)
Quitinasas , Animales , Humanos , Quitinasas/metabolismo , Bacterias/metabolismo , Polisacáridos/metabolismo , Quitina/metabolismo , Factores de Virulencia/metabolismo , Proteínas Portadoras , Mamíferos
2.
Nat Microbiol ; 7(12): 2025-2038, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36411353

RESUMEN

The fungal gut microbiota (mycobiota) has been implicated in diseases that disturb gut homeostasis, such as inflammatory bowel disease. However, little is known about functional relationships between bacteria and fungi in the gut during infectious colitis. Here we investigated the role of fungal metabolites during infection with the intestinal pathogen Salmonella enterica serovar Typhimurium, a major cause of gastroenteritis worldwide. We found that, in the gut lumen, both the mycobiota and fungi present in the diet can be a source of siderophores, small molecules that scavenge iron from the host. The ability to use fungal siderophores, such as ferrichrome and coprogen, conferred a competitive growth advantage to Salmonella strains expressing the fungal siderophore receptors FhuA or FhuE in vitro and in a mouse model. Our study highlights the role of inter-kingdom cross-feeding between fungi and Salmonella and elucidates an additional function of the gut mycobiota, revealing the importance of these understudied members of the gut ecosystem during bacterial infection.


Asunto(s)
Microbioma Gastrointestinal , Sideróforos , Animales , Ratones , Ecosistema , Dieta , Salmonella typhimurium
3.
Nat Commun ; 13(1): 7189, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36424374

RESUMEN

MHC restriction, which describes the binding of TCRs from CD4+ T cells to class II MHC proteins and TCRs from CD8+ T cells to class I MHC proteins, is a hallmark of immunology. Seemingly rare TCRs that break this paradigm exist, but mechanistic insight into their behavior is lacking. TIL1383I is a prototypical class-mismatched TCR, cloned from a CD4+ T cell but recognizing the tyrosinase tumor antigen presented by the class I MHC HLA-A2 in a fully functional manner. Here we find that TIL1383I binds this class I target with a highly atypical geometry. Despite unorthodox binding, TCR signaling, antigen specificity, and the ability to use CD8 are maintained. Structurally, a key feature of TIL1383I is an exceptionally long CDR3ß loop that mediates functions that are traditionally performed separately by hypervariable and germline loops in canonical TCR structures. Our findings thus expand the range of known TCR binding geometries compatible with normal function and specificity, provide insight into the determinants of MHC restriction, and may help guide TCR selection and engineering for immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T , Membrana Celular , Ingeniería , Antígeno HLA-A2/genética
4.
PLoS Pathog ; 18(4): e1010167, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35482787

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causes of food-borne illnesses worldwide. To colonize the gastrointestinal tract, S. Typhimurium produces multiple virulence factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence factors for various pathogenic bacterial species, and the S. Typhimurium genome contains two annotated chitinases: STM0018 (chiA) and STM0233. However, the role of these chitinases during S. Typhimurium pathogenesis is unknown. The putative chitinase STM0233 has not been studied previously, and only limited data exists on ChiA. Chitinases typically hydrolyze chitin polymers, which are absent in vertebrates. However, chiA expression was detected in infection models and purified ChiA cleaved carbohydrate subunits present on mammalian surface glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of chiA and STM0233 is upregulated in the mouse gut and that both chitinases facilitate epithelial cell adhesion and invasion. S. Typhimurium lacking both chitinases showed a 70% reduction in invasion of small intestinal epithelial cells in vitro. In a gastroenteritis mouse model, chitinase-deficient S. Typhimurium strains were also significantly attenuated in the invasion of small intestinal tissue. This reduced invasion resulted in significantly delayed S. Typhimurium dissemination to the spleen and the liver, but chitinases were not required for systemic survival. The invasion defect of the chitinase-deficient strain was rescued by the presence of wild-type S. Typhimurium, suggesting that chitinases are secreted. By analyzing N-linked glycans of small intestinal cells, we identified specific N-acetylglucosamine-containing glycans as potential extracellular targets of S. Typhimurium chitinases. This analysis also revealed a differential abundance of Lewis X/A-containing glycans that is likely a result of host cell modulation due to the detection of S. Typhimurium chitinases. Similar glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the chitinases. Overall, our results demonstrate that S. Typhimurium chitinases contribute to intestinal adhesion and invasion through modulation of the host glycome.


Asunto(s)
Quitinasas , Salmonella enterica , Animales , Quitina , Quitinasas/genética , Quitinasas/metabolismo , Mamíferos , Ratones , Salmonella enterica/metabolismo , Salmonella typhimurium , Serogrupo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
5.
J Mol Biol ; 433(16): 166968, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-33798529

RESUMEN

Potassium ion homeostasis is essential for bacterial survival, playing roles in osmoregulation, pH homeostasis, regulation of protein synthesis, enzyme activation, membrane potential adjustment and electrical signaling. To accomplish such diverse physiological tasks, it is not surprising that a single bacterium typically encodes several potassium uptake and release systems. To understand the role each individual protein fulfills and how these proteins work in concert, it is important to identify the molecular details of their function. One needs to understand whether the systems transport ions actively or passively, and what mechanisms or ligands lead to the activation or inactivation of individual systems. Combining mechanistic information with knowledge about the physiology under different stress situations, such as osmostress, pH stress or nutrient limitation, one can identify the task of each system and deduce how they are coordinated with each other. By reviewing the general principles of bacterial membrane physiology and describing the molecular architecture and function of several bacterial K+-transporting systems, we aim to provide a framework for microbiologists studying bacterial potassium homeostasis and the many K+-translocating systems that are still poorly understood.


Asunto(s)
Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Homeostasis , Potasio/metabolismo , Transporte Biológico , Transporte Iónico , Potenciales de la Membrana , Potasio/química , Canales de Potasio/química , Canales de Potasio/metabolismo , Relación Estructura-Actividad
6.
J Biol Chem ; 296: 100686, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33891944

RESUMEN

Using a variety of activating and inhibitory receptors, natural killer (NK) cells protect against disease by eliminating cells that have downregulated class I major histocompatibility complex (MHC) proteins, such as in response to cell transformation or viral infection. The inhibitory murine NK receptor Ly49C specifically recognizes the class I MHC protein H-2Kb. Unusual among NK receptors, Ly49C exhibits a peptide-dependent sensitivity to H-2Kb recognition, which has not been explained despite detailed structural studies. To gain further insight into Ly49C peptide sensitivity, we examined Ly49C recognition biochemically and through the lens of dynamic allostery. We found that the peptide sensitivity of Ly49C arises through small differences in H-2Kb-binding affinity. Although molecular dynamics simulations supported a role for peptide-dependent protein dynamics in producing these differences in binding affinity, calorimetric measurements indicated an enthalpically as opposed to entropically driven process. A quantitative linkage analysis showed that this emerges from peptide-dependent dynamic tuning of electrostatic interactions across the Ly49C-H-2Kb interface. We propose a model whereby different peptides alter the flexibility of H-2Kb, which in turn changes the strength of electrostatic interactions across the protein-protein interface. Our results provide a quantitative assessment of how peptides alter Ly49C-binding affinity, suggest the underlying mechanism, and demonstrate peptide-driven allostery at work in class I MHC proteins. Lastly, our model provides a solution for how dynamic allostery could impact binding of some, but not all, class I MHC partners depending on the structural and chemical composition of the interfaces.


Asunto(s)
Células Asesinas Naturales/metabolismo , Subfamilia A de Receptores Similares a Lectina de Células NK/metabolismo , Regulación Alostérica , Animales , Cinética , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Subfamilia A de Receptores Similares a Lectina de Células NK/química , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato
7.
Cell Rep Med ; 2(2): 100194, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33665637

RESUMEN

CD8+ T cell recognition of peptide epitopes plays a central role in immune responses against pathogens and tumors. However, the rules that govern which peptides are truly recognized by existing T cell receptors (TCRs) remain poorly understood, precluding accurate predictions of neo-epitopes for cancer immunotherapy. Here, we capitalize on recent (neo-)epitope data to train a predictor of immunogenic epitopes (PRIME), which captures molecular properties of both antigen presentation and TCR recognition. PRIME not only improves prioritization of neo-epitopes but also correlates with T cell potency and unravels biophysical determinants of TCR recognition that we experimentally validate. Analysis of cancer genomics data reveals that recurrent mutations tend to be less frequent in patients where they are predicted to be immunogenic, providing further evidence for immunoediting in human cancer. PRIME will facilitate identification of pathogen epitopes in infectious diseases and neo-epitopes in cancer immunotherapy.


Asunto(s)
Presentación de Antígeno/inmunología , Epítopos de Linfocito T/inmunología , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/genética , Humanos , Inmunoterapia/métodos , Péptidos/inmunología
8.
Infect Immun ; 89(4)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33526565

RESUMEN

The term "microbiota" invokes images of mucosal surfaces densely populated with bacteria. These surfaces and the luminal compartments they form indeed predominantly harbor bacteria. However, research from this past decade has started to complete the picture by focusing on important but largely neglected constituents of the microbiota: fungi, viruses, and archaea. The community of commensal fungi, also called the mycobiota, interacts with commensal bacteria and the host. It is thus not surprising that changes in the mycobiota have significant impact on host health and are associated with pathological conditions such as inflammatory bowel disease (IBD). In this review we will give an overview of why the mycobiota is an important research area and different mycobiota research tools. We will specifically focus on distinguishing transient and actively colonizing fungi of the oral and gut mycobiota and their roles in health and disease. In addition to correlative and observational studies, we will discuss mechanistic studies on specific cross-kingdom interactions of fungi, bacteria, and the host.


Asunto(s)
Bacterias , Susceptibilidad a Enfermedades , Hongos , Homeostasis , Interacciones Microbiota-Huesped , Interacciones Microbianas , Micobioma , Animales , Interacciones Microbiota-Huesped/inmunología , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Metagenoma , Metagenómica/métodos , Técnicas Microbiológicas , Microbiota , Especificidad de Órganos
9.
Nat Chem Biol ; 16(11): 1269-1276, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32807968

RESUMEN

T-cell recognition of peptides incorporating nonsynonymous mutations, or neoepitopes, is a cornerstone of tumor immunity and forms the basis of new immunotherapy approaches including personalized cancer vaccines. Yet as they are derived from self-peptides, the means through which immunogenic neoepitopes overcome immune self-tolerance are often unclear. Here we show that a point mutation in a non-major histocompatibility complex anchor position induces structural and dynamic changes in an immunologically active ovarian cancer neoepitope. The changes pre-organize the peptide into a conformation optimal for recognition by a neoepitope-specific T-cell receptor, allowing the receptor to bind the neoepitope with high affinity and deliver potent T-cell signals. Our results emphasize the importance of structural and physical changes relative to self in neoepitope immunogenicity. Considered broadly, these findings can help explain some of the difficulties in identifying immunogenic neoepitopes from sequence alone and provide guidance for developing novel, neoepitope-based personalized therapies.


Asunto(s)
Aciltransferasas/metabolismo , Epítopos de Linfocito T/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Inmunoterapia/métodos , Péptidos/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Aciltransferasas/genética , Dominio Catalítico , Femenino , Genoma Humano , Humanos , Cinética , Simulación de Dinámica Molecular , Mutación , Neoplasias Ováricas/metabolismo , Unión Proteica , Conformación Proteica , Transducción de Señal , Relación Estructura-Actividad , Linfocitos T/metabolismo , Termodinámica
10.
Front Immunol ; 10: 2047, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555277

RESUMEN

The development of immunological therapies that incorporate peptide antigens presented to T cells by MHC proteins is a long sought-after goal, particularly for cancer, where mutated neoantigens are being explored as personalized cancer vaccines. Although neoantigens can be identified through sequencing, bioinformatics and mass spectrometry, identifying those which are immunogenic and able to promote tumor rejection remains a significant challenge. Here we examined the potential of high-resolution structural modeling followed by energetic scoring of structural features for predicting neoantigen immunogenicity. After developing a strategy to rapidly and accurately model nonameric peptides bound to the common class I MHC protein HLA-A2, we trained a neural network on structural features that influence T cell receptor (TCR) and peptide binding energies. The resulting structurally-parameterized neural network outperformed methods that do not incorporate explicit structural or energetic properties in predicting CD8+ T cell responses of HLA-A2 presented nonameric peptides, while also providing insight into the underlying structural and biophysical mechanisms governing immunogenicity. Our proof-of-concept study demonstrates the potential for structure-based immunogenicity predictions in the development of personalized peptide-based vaccines.


Asunto(s)
Antígenos de Neoplasias/química , Antígenos de Neoplasias/inmunología , Inmunidad , Neoplasias/etiología , Área Bajo la Curva , Sitios de Unión , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Susceptibilidad a Enfermedades , Antígeno HLA-A2/inmunología , Antígeno HLA-A2/metabolismo , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/inmunología , Humanos , Modelos Moleculares , Conformación Molecular , Péptidos/química , Péptidos/inmunología , Unión Proteica , Relación Estructura-Actividad
11.
Mol Ther ; 27(2): 300-313, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30617019

RESUMEN

T cell receptors (TCRs) have emerged as a new class of immunological therapeutics. However, though antigen specificity is a hallmark of adaptive immunity, TCRs themselves do not possess the high specificity of monoclonal antibodies. Although a necessary function of T cell biology, the resulting cross-reactivity presents a significant challenge for TCR-based therapeutic development, as it creates the potential for off-target recognition and immune toxicity. Efforts to enhance TCR specificity by mimicking the antibody maturation process and enhancing affinity can inadvertently exacerbate TCR cross-reactivity. Here we demonstrate this concern by showing that even peptide-targeted mutations in the TCR can introduce new reactivities against peptides that bear similarity to the original target. To counteract this, we explored a novel structure-guided approach for enhancing TCR specificity independent of affinity. Tested with the MART-1-specific TCR DMF5, our approach had a small but discernible impact on cross-reactivity toward MART-1 homologs yet was able to eliminate DMF5 cross-recognition of more divergent, unrelated epitopes. Our study provides a proof of principle for the use of advanced structure-guided design techniques for improving TCR specificity, and it suggests new ways forward for enhancing TCRs for therapeutic use.


Asunto(s)
Receptores de Antígenos de Linfocitos T/metabolismo , Inmunidad Adaptativa/fisiología , Anticuerpos Monoclonales/inmunología , Humanos , Antígeno MART-1/inmunología , Estructura Secundaria de Proteína , Resonancia por Plasmón de Superficie , Especificidad del Receptor de Antígeno de Linfocitos T
12.
Dalton Trans ; 44(8): 3708-16, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25521076

RESUMEN

Six Zn(II) complexes of derivatives of 1,4,7,10-tetraazacyclododecane (cyclen) were studied for binding to DNA sequences containing non-canonical thymines, including a hairpin with a single thymine bulge (T-bulge) and a G-quadruplex (H-telo) containing thymine loops. The cyclen-based macrocycles contained pendents with either two fused rings to give planar groups including quinolinone (QMC), coumarin (MCC) and quinoline (CQC) derivatives or a non-planar dansyl group (DSC). Macrocyclic complexes with three fused rings including an anthraquinone pendent (ATQ) were also studied. All Zn(II) complexes were stable in solution at micromolar concentrations and neutral pH with the Zn(L)(OH2) species prevailing for L = QMC and CQC at pH 7.5 and 100 mM NaCl. Immobilized T-bulge or H-telo G-quadruplex was used to study binding of the complexes by surface plasmon resonance (SPR) for several of the complexes. For the most part, data matched well with that obtained by isothermal calorimetry (ITC) and, for fluorescent complexes, by fluorescence titrations. Data showed that Zn(II) complexes containing planar aromatic pendents with two fused rings bound to T-bulge more tightly than complexes with non-planar pendents such as DSC. The H-telo DNA exhibited multiple binding sites for all complexes containing aromatic pendents. The complexes with two fused rings bound with low micromolar dissociation constants and two binding sites whereas a complex with three fused rings (ATQ) bound to three sites. This study shows that different pendent groups on Zn(II) cyclen complexes impart selectivity for recognition of non-canonical DNA structures.


Asunto(s)
Complejos de Coordinación/química , G-Cuádruplex , Timina/química , Zinc/química , Sitios de Unión , Calorimetría , Complejos de Coordinación/síntesis química , Cumarinas/química , Ciclamas , ADN/química , ADN/metabolismo , Compuestos Heterocíclicos/química , Conformación de Ácido Nucleico , Quinolinas/química , Espectrometría de Fluorescencia , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...