Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(11): 108304, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37965151

RESUMEN

Although severe cases of invasive mycoses of different hypoxic and anoxic body parts have been reported, growth and drug susceptibility of fungal pathogens under anaerobic conditions remains understudied. The current study evaluated anaerobic growth potential and drug susceptibility of environmental Scedosporium apiospermum isolates under aerobic and anaerobic conditions. All tested strains showed equivalent growth and higher sensitivity to tested antifungal drugs under anaerobic conditions with lower minimum inhibitory concentration (MIC) as compared to aerobic conditions. Antifungal azoles were effective against isolates under both aerobic and anaerobic conditions. Most strains were resistant to antifungal echinocandins and polyenes under aerobic conditions but exhibited sensitivity under anaerobic conditions. This study provides evidence that resistance of S. apiospermum to antifungal drugs varies with oxygen concentration and availability and suggests re-evaluating clinical breakpoints for antifungal compounds to treat invasive fungal infections more effectively.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37462829

RESUMEN

Xanthomonas oryzae causes tremendous damage in rice plants (Oryza sativa L). Therefore, this study is focused on siderophore-producing Bacillus albus (CWTS 10) for managing BLB disease caused by X. oryzae. Both B. albus and its crude siderophore (methanolic and diethyl ether) extracts inhibited X. oryzae (10-12 mm). Fourier transform infrared spectroscopy (FTIR) analysis of the extracts indicated the presence of catecholate siderophore functional groups. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed the presence of antimicrobial compounds such as 2-deoxystreptamine, miserotoxin, fumitremorgin C, pipercide, pipernonaline, gingerone A, and deoxyvasicinone. Complete genome sequencing revealed the gene clusters for antibiotic, siderophore, antibacterial, antifungal, and secondary metabolite production. An in vivo study revealed that bacteria (CWTS 10) and their siderophore extracts effectively inhibited X. oryzae. The mode of application of bacterial or siderophore extracts in terms of DI and DSI percentage was as follows: soak method > inoculation method > spray method. In addition to providing enhanced antagonistic activity, there was a significant increase in root and shoot length and weight (wet and dry) of treated plants compared to control plants challenged with X. oryzae. Thus, the results clearly indicate that siderophore-producing B. albus and its siderophore extracts strongly inhibited X. oryzae. However, further field experiments are required before being formulated to protect rice crops from X. oryzae.

3.
J Biosci ; 482023.
Artículo en Inglés | MEDLINE | ID: mdl-37309172

RESUMEN

Celiac disease (CeD) is an immune-mediated chronic disorder triggered by the ingestion of wheat gluten in genetically predisposed individuals. Gluten is a major food ingredient, infamously containing proline and glutamine-rich domains that are highly resistant to digestion by mammalian proteolytic enzymes. Thus, adhering to a gluten-free diet (GFD) is the only known treatment for CeD, albeit with many complications. Therefore, any therapy that eliminates the gluten immunogenic part before it reaches the small intestine is highly desirable. Probiotic therapy containing gluten-degrading bacteria (GDB) and their protease enzymes are possibly new approaches to treating CeD. Our study aimed to identify novel GDB from the duodenal biopsy of the first-degree relative (FDR) subjects (relatives of diseased individuals who are healthy but susceptible to celiac disease) with the potential to reduce gluten immunogenicity. Using the gluten agar plate technique, bacterial strains Brevibacterium casei NAB46 and Staphylococcus arlettae R2AA77 displaying glutenase activity were screened, identified, and characterized. Whole-genome sequencing found gluten-degrading prolyl endopeptidase (PEP) in the B. casei NAB46 genome and glutamyl endopeptidase (GEP) in the S. arlettae R2AA77 genome. Partially purified PEP has a specific activity of 1.15 U/mg, while GEP has a specific activity of 0.84 U/mg, which are, respectively, 6- and 9-fold times higher after concentrating the enzymes. Our results showed that these enzymes could hydrolyse immunotoxic gliadin peptides recognized in western blot using an anti-gliadin antibody. Additionally, a docking model was proposed for representative gliadin peptide PQPQLPYPQPQLP in the active site of the enzymes, where the residues of the N-terminal peptide extensively interact with the catalytic domain of the enzymes. These bacteria and their associated glutenase enzymes efficiently neutralize gliadin immunogenic epitopes, opening possibilities for their application as a dietary supplement in treating CeD patients.


Asunto(s)
Enfermedad Celíaca , Animales , Humanos , Glútenes , Intestino Delgado , Péptido Hidrolasas , Bacterias , Mamíferos
4.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37002541

RESUMEN

AIM: The aims of this study were to explore the antagonistic potential of siderophore-producing Bacillus subtilis (CWTS 5) for the suppression of Ralstonia solanacearum and to explore the mechanisms of inhibition by FTIR, LC-MS, and whole genome analysis. METHODS AND RESULTS: A siderophore-producing B. subtilis (CWTS 5) possessing several plant growth-promoting properties such as IAA and ACC deaminase production, phosphate solubilization, and nitrogen fixation was assessed for its inhibitory effect against R. solanacearum, and its mechanisms were explored by in vitro and in vivo analyses. The active secondary metabolites in the siderophore extracts were identified as 2-deoxystreptamine, miserotoxin, fumitremorgin C, pipercide, pipernonaline, gingerone A, and deoxyvasicinone by LC-MS analysis. The Arnow's test and antiSMASH analysis confirmed the presence of catecholate siderophores, and the functional groups determined by FTIR spectroscopy confirmed the presence of secondary metabolites in the siderophore extract possessing antagonistic effect. The complete genome sequence of CWTS 5 revealed the gene clusters responsible for siderophore, antibiotics, secondary metabolite production, and antibacterial and antifungal metabolites. Furthermore, the evaluation of CWTS 5 against R. solanacearum in pot studies demonstrated 40.0% reduced disease severity index (DSI) by CWTS 5, methanolic extract (DSI-26.6%), ethyl acetate extract (DSI-20.0%), and increased plant growth such as root and shoot length, wet weight and dry weight of Solanum lycopersicum L. owing to its antagonistic potential. This genomic insight will support future studies on the application of B. subtilis as a plant growth promoter and biocontrol agent against R. solanacearum for bacterial wilt management. CONCLUSION: The results of this study revealed that B. subtilis (CWTS 5) possesses multiple mechanisms that control R. solanacearum, reduce disease incidence, and improve S. lycopersicum growth.


Asunto(s)
Bacillus subtilis , Ralstonia solanacearum , Bacillus subtilis/fisiología , Ralstonia solanacearum/genética , Sideróforos , Plantas , Antibacterianos , Secuenciación Completa del Genoma , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
5.
Indian J Microbiol ; 62(2): 195-203, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35462719

RESUMEN

The landfill is an inexpensive way of municipal solid waste (MSW) management and contributes extensively to the total carbon budget and global climate change. Three landfills from two geographically distinct metro- cities of India were taken as model systems to create microcosms and study their physiochemistry, microbiology, and carbon emission. The microcosm experiments revealed that facultative anaerobic bacterial community showing the dominance in the beginning but with the progression of anoxia and anaerobic conditions, methanogenesis prevailed, resulting in a clear shift towards the abundance of methanogens especially the members of Methanosarcina, Methanocorpusculum, and Methanoculleus (70-90% of the total microbial population). Geochemical data showed a wide range of heterogeneity in landfills' composition located even in the same city. In past, greenhouse gas emission from landfills is mainly estimated using different models which lack accuracy. As limited information is available as of now, this study can elicit researcher interest for in-depth characterization of microbial diversity and carbon emission from landfills. The microcosm model presented in the current study is a robust and straightforward method of accurate estimation of amounts of different types of gases release from landfill. It can also be extrapolate for estimation of different gases release from actual landfill sites by setting the on-site experiments. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-021-00995-7.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...