Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Hum Neurosci ; 15: 645048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113243

RESUMEN

Neurofeedback (NF) is a complex learning scenario, as the task consists of trying out mental strategies while processing a feedback signal that signifies activation in the brain area to be self-regulated and acts as a potential reward signal. In an attempt to dissect these subcomponents, we obtained whole-brain networks associated with efficient self-regulation in two paradigms: parallel, where the task was performed concurrently, combining feedback with strategy execution; and serial, where the task was performed consecutively, separating feedback processing from strategy execution. Twenty participants attempted to control their anterior midcingulate cortex (aMCC) using functional magnetic resonance imaging (fMRI) NF in 18 sessions over 2 weeks, using cognitive and emotional mental strategies. We analyzed whole-brain fMRI activations in the NF training runs with the largest aMCC activation for the serial and parallel paradigms. The equal length of the strategy execution and the feedback processing periods in the serial paradigm allows a description of the two task subcomponents with equal power. The resulting activation maps were spatially correlated with functionally annotated intrinsic connectivity brain maps (BMs). Brain activation in the parallel condition correlates with the basal ganglia (BG) network, the cingulo-opercular network (CON), and the frontoparietal control network (FPCN); brain activation in the serial strategy execution condition with the default mode network (DMN), the FPCN, and the visual processing network; while brain activation in the serial feedback processing condition predominantly with the CON, the DMN, and the FPCN. Additional comparisons indicate that BG activation is characteristic to the parallel paradigm, while supramarginal gyrus (SMG) and superior temporal gyrus (STG) activations are characteristic to the serial paradigm. The multifaceted view of the subcomponents allows describing the cognitive processes associated with strategy execution and feedback processing independently in the serial feedback task and as combined processes in the multitasking scenario of the conventional parallel feedback task.

2.
Neuroscience ; 378: 22-33, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27133575

RESUMEN

Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information for further optimization of NFB trainings.


Asunto(s)
Aprendizaje/fisiología , Imagen por Resonancia Magnética , Corteza Motora/fisiología , Destreza Motora/fisiología , Neurorretroalimentación/fisiología , Corteza Somatosensorial/fisiología , Adulto , Mapeo Encefálico , Femenino , Mano/fisiología , Humanos , Imaginación/fisiología , Masculino , Corteza Motora/diagnóstico por imagen , Vías Nerviosas/fisiología , Corteza Somatosensorial/diagnóstico por imagen , Adulto Joven
3.
Ther Clin Risk Manag ; 13: 1333-1341, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29070951

RESUMEN

BACKGROUND: Calcaneal quantitative ultrasound (QUS) is a useful tool in osteoporosis screening. However, QUS device may not be available at all primary health care settings. Osteoporosis self-assessment tool for Asians (OSTA) is a simple algorithm for osteoporosis screening that does not require any sophisticated instruments. This study explored the possibility of replacing QUS with OSTA by determining their agreement in identifying individuals at risk of osteoporosis. METHODS: A cross-sectional study was conducted to recruit Malaysian men and women aged ≥50 years. Their bone health status was measured using a calcaneal QUS device and OSTA. The association between OSTA and QUS was determined using Spearman's correlation and their agreement was assessed using Cohen Kappa and receiver-operating curve. RESULTS: All QUS indices correlated significantly with OSTA (p<0.05). The agreement between QUS and OSTA was minimal but statistically significant (p<0.05). The performance of OSTA in identifying subjects at risk of osteoporosis according to QUS was poor-to-fair in women (p<0.05), but not statistically significant for men (p>0.05). Changing the cut-off values improved the performance of OSTA in women but not in men. CONCLUSION: The agreement between QUS and OSTA is minimal in categorizing individuals at risk of osteoporosis. Therefore, they cannot be used interchangeably in osteoporosis screening.

4.
Artículo en Inglés | MEDLINE | ID: mdl-28684685

RESUMEN

Risk factors for osteoporosis may vary according to different populations. We aimed to investigate the relationship between risk factors of osteoporosis and bone health indices determined via calcaneal quantitative ultrasound (QUS) in a group of Malaysian women aged 50 years or above. A cross-sectional study was performed on 344 Malaysian women recruited from a tertiary medical centre in Kuala Lumpur, Malaysia. They answered a self-administered questionnaire on their social-demographic details, medical history, lifestyle, and physical activity status. Their height was measured using a stadiometer, and their body composition estimated using a bioelectrical impedance device. Their bone health status was determined using a water-based calcaneal QUS device that generated three indices, namely speed of sound (SOS), broadband ultrasound attenuation (BUA), and stiffness index (SI). A T-score was computed from SI values using a reference database from a mainland Chinese population. Women with three or more lifetime pregnancies, who were underweight and not drinking coffee had a significantly lower BUA. Stepwise multiple linear regression showed that SOS was predicted by age alone, BUA and SI by years since menopause, body mass index (BMI), and number of lifetime pregnancies, and T-score by years since menopause and percentage of body fat. As a conclusion, suboptimal bone health in middle-aged and elderly Malaysian women as indicated by QUS is associated with old age, being underweight, having a high body fat percentage, and a high number of lifetime pregnancies. Women having several risk factors should be monitored more closely to protect their bones against accelerated bone loss.


Asunto(s)
Osteoporosis/epidemiología , Anciano , Composición Corporal , Índice de Masa Corporal , Densidad Ósea , Calcáneo/diagnóstico por imagen , Estudios Transversales , Femenino , Estado de Salud , Humanos , Estilo de Vida , Modelos Lineales , Malasia/epidemiología , Menopausia , Persona de Mediana Edad , Osteoporosis/diagnóstico por imagen , Embarazo , Factores de Riesgo , Encuestas y Cuestionarios , Delgadez/diagnóstico por imagen , Delgadez/epidemiología , Ultrasonografía
5.
Front Hum Neurosci ; 8: 990, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25566020

RESUMEN

To elucidate basic mechanisms underlying neurofeedback we investigated neural mechanisms of training of slow cortical potentials (SCPs) by considering EEG- and fMRI. Additionally, we analyzed the feasibility of a double-blind, placebo-controlled design in NF research based on regulation performance during treatment sessions and self-assessment of the participants. Twenty healthy adults participated in 16 sessions of SCPs training: 9 participants received regular SCP training, 11 participants received sham feedback. At three time points (pre, intermediate, post) fMRI and EEG/ERP-measurements were conducted during a continuous performance test (CPT). Performance-data during the sessions (regulation performance) in the treatment group and the placebo group were analyzed. Analysis of EEG-activity revealed in the SCP group a strong enhancement of the CNV (electrode Cz) at the intermediate assessment, followed by a decrease back to baseline at the post-treatment assessment. In contrast, in the placebo group a continuous but smaller increase of the CNV could be obtained from pre to post assessment. The increase of the CNV in the SCP group at intermediate testing was superior to the enhancement in the placebo group. The changes of the CNV were accompanied by a continuous improvement in the test performance of the CPT from pre to intermediate to post assessment comparable in both groups. The change of the CNV in the SCP group is interpreted as an indicator of neural plasticity and efficiency while an increase of the CNV in the placebo group might reflect learning and improved timing due to the frequent task repetition. In the fMRI analysis evidence was obtained for neuronal plasticity. After regular SCP neurofeedback activation in the posterior parietal cortex decreased from the pre- to the intermediate measurement and increased again in the post measurement, inversely following the U-shaped increase and decrease of the tCNV EEG amplitude in the SCP-trained group. Furthermore, we found a localized increase of activity in the anterior cingulate cortex (ACC). Analyses of the estimation of treatment assignment by the participants indicate feasibility of blinding. Participants could not assess treatment assignment confidently. Participants of the SCP-group improved regulation capability during treatment sessions (in contrast to the participants of the placebo-group), although regulation capability appeared to be instable, presumably due to diminished confidence in the training (SCP- or sham-training). Our results indicate that SCP training in healthy adults might lead to functional changes in neuronal circuits serving cognitive preparation even after a limited number of sessions.

6.
Malays J Med Sci ; 20(5): 5-15, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24643368

RESUMEN

Neurofeedback (NFB) allows subjects to learn how to volitionally influence the neuronal activation in the brain by employing real-time neural activity as feedback. NFB has already been performed with electroencephalography (EEG) since the 1970s. Functional MRI (fMRI), offering a higher spatial resolution, has further increased the spatial specificity. In this paper, we briefly outline the general principles behind NFB, the implementation of fMRI-NFB studies, the feasibility of fMRI-NFB, and the application of NFB as a supplementary therapy tool.

7.
Malays J Med Sci ; 18(1): 1-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22135566

RESUMEN

This special editorial assessed the recent developments in Malaysian Journal of Medical Sciences (MJMS) and examined the characteristics of the submission, peer review, and publication processes for MJMS. This retrospective analysis used information about the manuscripts submitted to MJMS during the one-year period (from 1 June 2010 to 31 May 2010) since the start of current online submission and review system (ScholarOne(™) Manuscripts, Thomson Reuters). In addition, we also discussed the future directions of MJMS. Finally, we would like to recommend an annual internal audit for MJMS, which is very useful to monitor the growth of this journal progressively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA