Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anticancer Agents Med Chem ; 23(13): 1545-1566, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37073157

RESUMEN

BACKGROUND: Medicinal plants are known to contain numerous phytometabolites with suggested pharmacological value. Literature suggests that the medicinal use of phytometabolites in its natural state has limited success due to poor absorption rates. Currently, the focus lies on synthesizing phytometabolites extracted from medicinal plants and silver ions to generate nano-scale carriers with specialized properties. Thus, the nano-synthesis of phytometabolites with silver (Ag+) ions is proposed. The use of silver is promoted due to its known antibacterial and antioxidant effectiveness, among many. Nanotechnology allows for the green generation of nano-scaled particles that are able to penetrate target areas due to its size and unique structure. Therefore, this study aimed to generate a novel protocol for the synthesis of AgNP's using the leaf and stembark extracts of C. erythrophyllum. In addition, the biological activity of the generated nanoparticles was evaluated. OBJECTIVES: To synthesis silver nanoparticles (AgNP's) using the leaf and stembark extracts of Combretum erythrophyllum. The relative shape, size, distribution, and zeta potential of the synthesised particles were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), Nanoparticle tracking analysis (NTA), and UV Spectrophotometry (UV -vis). To screen the synthesised particles for its potential antibacterial, apoptotic and cytotoxic properties. METHODS: A novel protocol for the synthesis of silver nanoparticles (AgNP's) using the leaf and stembark extracts of Combretum erythrophyllum was established. The generated AgNP's were characterised using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), Nanoparticle tracking analysis (NTA), and UV Spectrophotometry (UV -vis). Furthermore, the AgNP's were evaluated for their antibacterial, cytotoxic and apoptotic activity against a range of bacterial strains and cancer cells. Characterisation was based upon particle size, shape and elemental silver composition. RESULTS: Within the stembark extract, synthesised nanoparticles were large, spherical in shape and dense in elemental silver composition. While synthesised nanoparticles of the leaf extract were small to medium in size, varied in shape established and contained minimal quantities of silver (substantiated by the TEM and NTA results). Furthermore, it was established that the synthesized nanoparticles exhibited high antibacterial properties due to the conducted antibacterial assay. The FTIR analysis revealed the presence of numerous functional groups within active compounds found in the synthesised extracts. Functional groups found varied between the leaf and stembark extracts, each with proposed pharmacological activity. CONCLUSION: Presently, antibiotic-resistant bacteria are continuously evolving thus, posing as a threat to conventional drug delivery systems. Nanotechnology provides a platform that enables the formulation of a low-toxicity and hypersensitive drug delivery system. Further studies evaluating the biological activity of extracts of C. erythrophyllum synthesized with silver nanoparticles could enhance its proposed pharmaceutical value.


Asunto(s)
Antineoplásicos , Combretum , Nanopartículas del Metal , Plantas Medicinales , Humanos , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Antineoplásicos/farmacología , Antibacterianos/química , Difracción de Rayos X
2.
Artif Cells Nanomed Biotechnol ; 49(1): 48-60, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33403879

RESUMEN

Nanoparticles (NPs) have biological activities like antibacterial, antifungal, drug delivery, immunomodulation and antitumor activities. The aim of the current study was to investigate some of biomedical applications of silver NP synthesis using extracts from leaves of Eriobotrya japonica. Colour changes, UV-visible spectroscopy, SEM, zeta potential, dynamic light scattering, FTIR and XRD were used to confirm AgNPs formation. The UV-vis spectrum absorption band was observed at almost 430 nm. The SEM image shows quasi-spherical shape of AgNPs. The zeta potential demonstrated the negative surface charge of NPs. FTIR results showed the functional groups of AgNPs. Crystalline nature of AgNPs was confirmed by XRD pattern. MTT assay was used to study the anti-proliferative activity against MCF-7 and HeLa cells. Apoptosis was tested using a DNA-fragmentation test, and expression of P53. AgNPs inhibited the proliferation of MCF-7 and HeLa cells, and reduced inflammation. Treatment with AgNPs significantly decreased allergic disorder. AgNPs stimulated the phagocytosis process in BMDMs. The results suggested that AgNPs could be a promising therapy for future and preventing inflammation, reduce allergic disorders and prevent bacterial infection through the up-regulation of phagocytosis. Hence, future work such as developed and improved NPs as adjuvants, immune-modulating substances and nano-drug delivery system is needed.


Asunto(s)
Antineoplásicos , Proliferación Celular/efectos de los fármacos , Eriobotrya/química , Tecnología Química Verde , Hipersensibilidad , Nanopartículas del Metal , Neoplasias , Extractos Vegetales/química , Plata , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Células HeLa , Humanos , Hipersensibilidad/tratamiento farmacológico , Hipersensibilidad/metabolismo , Hipersensibilidad/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Células MCF-7 , Masculino , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Fagocitosis , Plata/química , Plata/farmacología
3.
Plants (Basel) ; 10(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375618

RESUMEN

Herbicides are natural or synthetic chemicals used to control unwanted plants (weeds). To avoid the harmful effects of synthetic herbicides, considerable effort has been devoted to finding alternative products derived from natural sources. Essential oils (EOs) from aromatic plants are auspicious source of bioherbicides. This review discusses phytotoxic EOs and their chemical compositions as reported from 1972 to 2020. Using chemometric analysis, we attempt to build a structure-activity relationship between phytotoxicity and EO chemical composition. Data analysis reveals that oxygenated terpenes, and mono- and sesquiterpenes, in particular, play principal roles in the phytotoxicity of EOs. Pinene, 1,8 cineole, linalool, and carvacrol are the most effective monoterpenes, with significant phytotoxicity evident in the EOs of many plants. Caryophyllene and its derivatives, including germacrene, spathulenol, and hexahydrofarnesyl acetone, are the most effective sesquiterpenes. EOs rich in iridoids (non-terpene compounds) also exhibit allelopathic activity. Further studies are recommended to evaluate the phytotoxic activity of these compounds in pure forms, determine their activity in the field, evaluate their safety, and assess their modes of action.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA