Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Int J Radiat Biol ; 98(3): 267-275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35030065

RESUMEN

PURPOSE: This review is focused on radium and radionuclides in its decay chain in honor of Marie Curie, who discovered this element. MATERIALS AND METHODS: We conglomerated current knowledge regarding radium and its history predating our present understanding of this radionuclide. RESULTS: An overview of the properties of radium and its dose assessment is shown followed by discussions about both the negative detrimental and positive therapeutic applications of radium with this history and its evolution reflecting current innovations in medical science. CONCLUSIONS: We hope to remind all those who are interested in the progress of science about the vagaries of the process of scientific discovery. In addition, we raise the interesting question of whether Marie Curie's initial success was in part possible due to her tight alignment with her husband Pierre Curie who pushed the work along.


Asunto(s)
Radiología , Radio (Elemento) , Femenino , Francia , Historia del Siglo XIX , Historia del Siglo XX , Humanos , Radiología/historia
6.
Phys Med Biol ; 66(3): 035005, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33142278

RESUMEN

In both the International Commission on Radiological Protection (ICRP) and Medical Internal Radiation Dose (MIRD) schemata of internal dosimetry, the S-value is defined as the absorbed dose to a target organ per nuclear decay of the radionuclide in a source organ. Its computation requires data on the energies and yields of all radiation emissions from radionuclide decay, the mass of the target organ, and the value of the absorbed fraction-the fraction of particle energy emitted in the source organ that is deposited in the target organ. The specific absorbed fraction (SAF) is given as the ratio of the absorbed fraction and the target mass. Historically, in the early development of both schemata, computational simplifications were made to the absorbed fraction in considering both organ self-dose ([Formula: see text]) and organ cross-dose ([Formula: see text]). In particular, the value of the absorbed fraction was set to unity for all 'non-penetrating' particle emissions (electrons and alpha particles) such that they contributed only to organ self-dose. As radiation transport codes for charged particles became more widely available, it became increasingly possible to abandon this distinction and to explicitly consider the transport of internally emitted electrons in a manner analogous to that for photons. In this present study, we report on an extensive series of electron SAFs computed in a revised series of the UF/NCI pediatric phantoms. A total of 28 electron energies-0-10 MeV-along a logarithmic energy grid are provided in electronic annexes, where 0 keV is associated with limiting values of the SAF. Electron SAFs were computed independently for collisional energy losses (SAFCEL) and radiation energy losses (SAFREL) to the target organ. A methodology was employed in which values of SAFREL were compiled by first assembling organ-specific and electron energy-specific bremsstrahlung x-ray spectra, and then using these x-ray spectra to re-weight a previously established monoenergetic database of photon SAFs for all phantoms and source-target combinations. Age-dependent trends in the electron SAF were demonstrated for the majority of the source-target organ pairs, and were consistent to values given for the ICRP adult phantoms. In selected cases, however, anticipated age-dependent trends were not seen, and were attributed to anatomical differences in relative organ positioning at specific phantom ages. Both the electron SAFs of this study, and the photon SAFs from our companion study, are presently being used by ICRP Committee 2 in its upcoming pediatric extension to ICRP Publication 133.


Asunto(s)
Electrones , National Cancer Institute (U.S.)/normas , Fantasmas de Imagen , Fotones , Radiometría/instrumentación , Adulto , Niño , Humanos , Masculino , Método de Montecarlo , Dosis de Radiación , Estados Unidos
7.
Phys Med Biol ; 66(3): 035006, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33142280

RESUMEN

Assessment of radiation absorbed dose to internal organs of the body from the intake of radionuclides, or in the medical setting through the injection of radiopharmaceuticals, is generally performed based upon reference biokinetic models or patient imaging data, respectively. Biokinetic models estimate the time course of activity localized to source organs. The time-integration of these organ activity profiles are then scaled by the radionuclide S-value, which defines the absorbed dose to a target tissue per nuclear transformation in various source tissues. S-values are computed using established nuclear decay information (particle energies and yields), and a parameter termed the specific absorbed fraction (SAF). The SAF is the ratio of the absorbed fraction-fraction of particle energy emitted in the source tissue that is deposited in the target tissue-and the target organ mass. While values of the SAF may be computed using patient-specific or individual-specific anatomic models, they have been more widely available through the use of computational reference phantoms. In this study, we report on an extensive series of photon SAFs computed in a revised series of the University of Florida and the National Cancer Institute pediatric reference phantoms which have been modified to conform to the specifications embodied in the ICRP reference adult phantoms of Publication 110 (e.g. organs modeled, organ ID numbers, blood contribution to elemental compositions). Following phantom anatomical revisions, photon radiation transport simulations were performed using MCNPX v2.7 in each of the ten phantoms of the series-male and female newborn, 1 year old, 5 year old, 10 year old, and 15 year old-for 60 different tissues serving as source and/or target regions. A total of 25 photon energies were considered from 10 keV to 10 MeV along a logarithm energy grid. Detailed analyses were conducted of the relative statistical errors in the Monte Carlo target tissue energy deposition tallies at low photon energies and over all energies for source-target combinations at large intra-organ separation distances. Based on these analyses, various data smoothing algorithms were employed, including multi-point weighted data smoothing, and log-log interpolation at low energies (1 keV and 5 keV) using limiting SAF values based upon target organ mass to bound the interpolation interval. The final dataset is provided in a series of ten electronic supplemental files in MS Excel format. The results of this study were further used as the basis for assessing the radiative component of internal electron source SAFs as described in our companion paper (Schwarz et al 2021) for this same pediatric phantom series.


Asunto(s)
National Cancer Institute (U.S.)/normas , Fantasmas de Imagen , Fotones , Radiometría/instrumentación , Adulto , Algoritmos , Niño , Preescolar , Electrones , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Método de Montecarlo , Dosis de Radiación , Estados Unidos
8.
Health Phys ; 119(3): 367, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32740395
9.
Phys Med Biol ; 65(6): 065007, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32059205

RESUMEN

For external irradiation, the variability in organ dose estimation found between computational phantom generations arises particularly from the differences in organ positioning. This work represents the first effort to quantify the differences in organ depth below the body surface between a stylized and voxel phantom series. Herein, the revised Oak Ridge National Laboratory stylized phantom series and the University of Florida/National Cancer Institute voxel phantom series were compared. Both series include whole-body models of the newborn; the 1-, 5-, 10-, and 15-year-old; and the adult human. Organ depths from eight different directions applicable to external irradiation geometries were computed: antero-posterior, postero-anterior, left and right lateral, rotational, isotropic, cranial and caudal directions. Organ depths in the stylized phantoms were computed using a ray-tracing technique available through Monte Carlo radiation transport simulations in MCNP6. Organ depths in the voxel phantom were found using phantom matrix manipulation. Resultant organ depths for both series were plotted as distributions; available are twenty-four organs and two bone tissue distributions for each of six phantom ages and in each of the eight directional geometries. Quantitative data descriptors (e.g. mean and median depths) were also tabulated. For demonstration purposes, a literature review of relevant stylized versus voxel comparison works was performed to explore where the quantification of organ depth differences can provide further insight or evidence to study conclusions. The entire dataset of organ depth distributions and their data descriptors can be found in online supplementary files.


Asunto(s)
Fantasmas de Imagen , Radiometría/instrumentación , Adolescente , Adulto , Niño , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Método de Montecarlo , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...