Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Cancer Res ; 84(15): 2403-2416, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38861359

RESUMEN

The NCI60 human tumor cell line screen has been in operation as a service to the cancer research community for more than 30 years. The screen operated with 96-well plates, a 2-day exposure period to test agents, and following cell fixation, a visible absorbance endpoint by the protein-staining dye sulforhodamine B. In this study, we describe the next phase of this important cancer research tool, the HTS384 NCI60 screen. Although the cell lines remain the same, the updated screen is performed with 384-well plates, a 3-day exposure period to test agents, and a luminescent endpoint to measure cell viability based upon cellular ATP content. In this study, a library of 1,003 FDA-approved and investigational small-molecule anticancer agents was screened by the two NCI60 assays. The datasets were compared with a focus on targeted agents with at least six representatives in the library. For many agents, including inhibitors of EGFR, BRAF, MEK, ERK, and PI3K, the patterns of GI50 values were very similar between the screens with strong correlations between those patterns within the dataset from each screen. However, for some groups of targeted agents, including mTOR, BET bromodomain, and NAMPRTase inhibitors, there were limited or no correlations between the two datasets, although the patterns of GI50 values and correlations between those patterns within each dataset were apparent. Beginning in January 2024, the HTS384 NCI60 screen became the free screening service of the NCI to facilitate drug discovery by the cancer research community. Significance: The new NCI60 cell line screen HTS384 shows robust patterns of response to oncology agents and substantial overlap with the classic screen, providing an updated tool for studying therapeutic agents. See related commentary by Colombo and Corsello, p. 2397.


Asunto(s)
Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Supervivencia Celular/efectos de los fármacos
2.
Cancer Res Commun ; 3(8): 1648-1661, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37637936

RESUMEN

Multicellular spheroids comprised of malignant cells, endothelial cells, and mesenchymal stem cells served as an in vitro model of human solid tumors to investigate the potentiation of DNA-damaging drugs by pharmacologic modulation of DNA repair pathways. The DNA-damaging drugs, topotecan, trabectedin, and temozolomide were combined with varied inhibitors of DNA damage response enzymes including PARP (olaparib or talazoparib), ATM (ataxia telangiectasia mutated; AZD-1390), ATR (ataxia telangiectasia and Rad3-related protein; berzosertib or elimusertib), and DNA-PK (DNA-dependent protein kinase; nedisertib or VX-984). A range of clinically achievable concentrations were tested up to the clinical Cmax, if known. Mechanistically, the types of DNA damage induced by temozolomide, topotecan, and trabectedin are distinct, which was apparent from the response of spheroids to combinations with various DNA repair inhibitors. Although most combinations resulted in additive cytotoxicity, synergistic activity was observed for temozolomide combined with PARP inhibitors as well as combinations of the ATM inhibitor AZD-1390 with either topotecan or trabectedin. These findings might provide guidance for the selection of anticancer agent combinations worthy of further investigation. Significance: Clinical efficacy of DNA-damaging anticancer drugs can be influenced by the DNA damage response in tumor cells. The potentiation of DNA-damaging drugs by pharmacologic modulation of DNA repair pathways was assessed in multicellular tumor spheroids. Although most combinations demonstrated additive cytotoxicity, synergistic cytotoxicity was observed for several drug combinations.


Asunto(s)
Ataxia Telangiectasia , Neoplasias , Humanos , Temozolomida/farmacología , Trabectedina , Células Endoteliales , Esferoides Celulares , Topotecan/farmacología , Neoplasias/tratamiento farmacológico , Reparación del ADN , ADN , Proteína Quinasa Activada por ADN
3.
Mol Cancer Ther ; 22(11): 1270-1279, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37550087

RESUMEN

The NCI-60 human tumor cell line panel has proved to be a useful tool for the global cancer research community in the search for novel chemotherapeutics. The publicly available cell line characterization and compound screening data from the NCI-60 assay have significantly contributed to the understanding of cellular mechanisms targeted by new oncology agents. Signature sensitivity/resistance patterns generated for a given chemotherapeutic agent against the NCI-60 panel have long served as fingerprint presentations that encompass target information and the mechanism of action associated with the tested agent. We report the establishment of a new public NCI-60 resource based on the cell line screening of a large and growing set of 175 FDA-approved oncology drugs (AOD) plus >825 clinical and investigational oncology agents (IOA), representing a diverse set (>250) of therapeutic targets and mechanisms. This data resource is available to the public (https://ioa.cancer.gov) and includes the raw data from the screening of the IOA and AOD collection along with an extensive set of visualization and analysis tools to allow for comparative study of individual test compounds and multiple compound sets.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
4.
ACS Omega ; 8(17): 15650-15659, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37151549

RESUMEN

The balance between protein degradation and protein synthesis is a highly choreographed process generally called proteostasis. Most intracellular protein degradation occurs through the ubiquitin-proteasome system (UPS). This degradation takes place through either a ubiquitin-dependent or a ubiquitin-independent proteasomal pathway. The ubiquitin-independent pathway selectively targets unfolded proteins, including intrinsically disordered proteins (IDPs). Dysregulation of proteolysis can lead to the accumulation of IDPs, seen in the pathogenesis of various diseases, including cancer and neurodegeneration. Therefore, the enhancement of the proteolytic activity of the 20S proteasome using small molecules has been identified as a promising pathway to combat IDP accumulation. Currently, there are a limited number of known small molecules that enhance the activity of the 20S proteasome, and few are observed to exhibit enhanced proteasome activity in cell culture. Herein, we describe the development of a high-throughput screening assay to identify cell-permeable proteasome enhancers by utilizing an AlphaLISA platform that measures the degradation of a GFP conjugated intrinsically disordered protein, ornithine decarboxylase (ODC). Through the screening of the Prestwick and NIH Clinical Libraries, a kinase inhibitor, erlotinib, was identified as a new 20S proteasome enhancer, which enhances the degradation of ODC in cells and α-synuclein in vitro.

5.
J Biol Chem ; 298(8): 102228, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35787375

RESUMEN

CAG repeat expansions in the ATXN2 (ataxin-2) gene can cause the autosomal dominant disorder spinocerebellar ataxia type 2 (SCA2) as well as increase the risk of ALS. Abnormal molecular, motor, and neurophysiological phenotypes in SCA2 mouse models are normalized by lowering ATXN2 transcription, and reduction of nonmutant Atxn2 expression has been shown to increase the life span of mice overexpressing the TDP-43 (transactive response DNA-binding protein 43 kDa) ALS protein, demonstrating the potential benefits of targeting ATXN2 transcription in humans. Here, we describe a quantitative high-throughput screen to identify compounds that lower ATXN2 transcription. We screened 428,759 compounds in a multiplexed assay using an ATXN2-luciferase reporter in human embryonic kidney 293 (HEK-293) cells and identified a diverse set of compounds capable of lowering ATXN2 transcription. We observed dose-dependent reductions of endogenous ATXN2 in HEK-293 cells treated with procillaridin A, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), and heat shock protein 990 (HSP990), known inhibitors of HSP90 and Na+/K+-ATPases. Furthermore, HEK-293 cells expressing polyglutamine-expanded ATXN2-Q58 treated with 17-DMAG had minimally detectable ATXN2, as well as normalized markers of autophagy and endoplasmic reticulum stress, including STAU1 (Staufen 1), molecular target of rapamycin, p62, LC3-II (microtubule-associated protein 1A/1B-light chain 3II), CHOP (C/EBP homologous protein), and phospho-eIF2α (eukaryotic initiation factor 2α). Finally, bacterial artificial chromosome ATXN2-Q22 mice treated with 17-DMAG or HSP990 exhibited highly reduced ATXN2 protein abundance in the cerebellum. Taken together, our study demonstrates inhibition of HSP90 or Na+/K+-ATPases as potentially effective therapeutic strategies for treating SCA2 and ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ataxias Espinocerebelosas , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Ataxina-2/genética , Cerebelo/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células HEK293 , Humanos , Proteínas de Unión al ARN/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética
6.
Front Oncol ; 12: 766794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444937

RESUMEN

Single agent and combination therapy with BRAFV600E/K and MEK inhibitors have remarkable efficacy against melanoma tumors with activating BRAF mutations, but in most cases BRAF inhibitor (BRAFi) resistance eventually develops. One resistance mechanism is reactivation of the ERK pathway. However, only about half of BRAFi resistance is due to ERK reactivation. The purpose of this study is to uncover pharmacological vulnerabilities of BRAFi-resistant melanoma cells, with the goal of identifying new therapeutic options for patients whose tumors have developed resistance to BRAFi/MEKi therapy. We screened a well-annotated compound library against a panel of isogenic pairs of parental and BRAFi-resistant melanoma cell lines to identify classes of compounds that selectively target BRAFi-resistant cells over their BRAFi-sensitive counterparts. Two distinct patterns of increased sensitivity to classes of pharmacological inhibitors emerged. In two cell line pairs, BRAFi resistance conferred increased sensitivity to compounds that share the property of cell cycle arrest at M-phase, including inhibitors of aurora kinase (AURK), polo-like kinase (PLK), tubulin, and kinesin. Live cell microscopy, used to track mitosis in real time, revealed that parental but not BRAFi-resistant melanoma cells were able to exit from compound-induced mitotic arrest through mitotic slippage, thus escaping death. Consistent with the key role of Cyclin B1 levels in regulating mitosis at the spindle checkpoint in arrested cells, we found lower Cyclin B1 levels in parental compared with BRAFi-resistant melanoma cells, suggesting that inability to down-regulate Cyclin B1 expression levels may explain the increased vulnerability of resistant cells to mitotic inhibitors. Another BRAFi-resistant cell line showed increased sensitivity to Chk1/2 inhibitors, which was associated with an accumulation of DNA damage, resulting in mitotic failure. This study demonstrates that BRAFi-resistance, in at least a subset of melanoma cells, confers vulnerability to pharmacological disruption of mitosis and suggests a targeted synthetic lethal approach for overcoming resistance to BRAF/MEK-directed therapies.

7.
J Biol Chem ; 297(5): 101268, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34600890

RESUMEN

Biogenic amines activate G-protein-coupled receptors (GPCRs) in the central nervous system in vertebrate animals. Several biogenic amines, when excreted, stimulate trace amine-associated receptors (TAARs), a group of GPCRs in the main olfactory epithelium, and elicit innate behaviors. How TAARs recognize amines with varying numbers of amino groups is largely unknown. We reasoned that a comparison between lamprey and mammalian olfactory TAARs, which are thought to have evolved independently but show convergent responses to polyamines, may reveal structural determinants of amine recognition. Here, we demonstrate that sea lamprey TAAR365 (sTAAR365) responds strongly to biogenic polyamines cadaverine, putrescine, and spermine, and shares a similar response profile as a mammalian TAAR (mTAAR9). Docking and site-directed mutagenesis analyses show that both sTAAR365 and mTAAR9 recognize the two amino groups of cadaverine with the conserved Asp3.32 and Tyr6.51 residues. sTAAR365, which has remarkable sensitivity for cadaverine (EC50 = 4 nM), uses an extra residue, Thr7.42, to stabilize ligand binding. These cadaverine recognition sites also interact with amines with four and three amino groups (spermine and spermidine, respectively). Glu7.36 of sTAAR365 cooperates with Asp3.32 and Thr7.42 to recognize spermine, whereas mTAAR9 recognizes spermidine through an additional aromatic residue, Tyr7.43. These results suggest a conserved mechanism whereby independently evolved TAAR receptors recognize amines with two, three, or four amino groups using the same recognition sites, at which sTAAR365 and mTAAR9 evolved distinct motifs. These motifs interact directly with the amino groups of the polyamines, a class of potent and ecologically important odorants, mediating olfactory signaling.


Asunto(s)
Poliaminas Biogénicas/química , Proteínas de Peces/química , Simulación del Acoplamiento Molecular , Receptores Odorantes/química , Secuencias de Aminoácidos , Animales , Sitios de Unión , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Células HEK293 , Humanos , Lampreas , Ratones , Mutagénesis Sitio-Dirigida , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
8.
J Biol Chem ; 297(4): 101191, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34520759

RESUMEN

Accumulation of α-synuclein is a main underlying pathological feature of Parkinson's disease and α-synucleinopathies, for which lowering expression of the α-synuclein gene (SNCA) is a potential therapeutic avenue. Using a cell-based luciferase reporter of SNCA expression we performed a quantitative high-throughput screen of 155,885 compounds and identified A-443654, an inhibitor of the multiple functional kinase AKT, as a potent inhibitor of SNCA. HEK-293 cells with CAG repeat expanded ATXN2 (ATXN2-Q58 cells) have increased levels of α-synuclein. We found that A-443654 normalized levels of both SNCA mRNA and α-synuclein monomers and oligomers in ATXN2-Q58 cells. A-443654 also normalized levels of α-synuclein in fibroblasts and iPSC-derived dopaminergic neurons from a patient carrying a triplication of the SNCA gene. Analysis of autophagy and endoplasmic reticulum stress markers showed that A-443654 successfully prevented α-synuclein toxicity and restored cell function in ATXN2-Q58 cells, normalizing the levels of mTOR, LC3-II, p62, STAU1, BiP, and CHOP. A-443654 also decreased the expression of DCLK1, an inhibitor of α-synuclein lysosomal degradation. Our study identifies A-443654 and AKT inhibition as a potential strategy for reducing SNCA expression and treating Parkinson's disease pathology.


Asunto(s)
Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Indazoles/farmacología , Indoles/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , alfa-Sinucleína/biosíntesis , Células HEK293 , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , alfa-Sinucleína/genética
9.
Cancers (Basel) ; 13(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33921974

RESUMEN

The Ras/MEK/ERK pathway has been the primary focus of targeted therapies in melanoma; it is aberrantly activated in almost 80% of human cutaneous melanomas (≈50% BRAFV600 mutations and ≈30% NRAS mutations). While drugs targeting the MAPK pathway have yielded success in BRAFV600 mutant melanoma patients, such therapies have been ineffective in patients with NRAS mutant melanomas in part due to their cytostatic effects and primary resistance. Here, we demonstrate that increased Rho/MRTF-pathway activation correlates with high intrinsic resistance to the MEK inhibitor, trametinib, in a panel of NRAS mutant melanoma cell lines. A combination of trametinib with the Rho/MRTF-pathway inhibitor, CCG-222740, synergistically reduced cell viability in NRAS mutant melanoma cell lines in vitro. Furthermore, the combination of CCG-222740 with trametinib induced apoptosis and reduced clonogenicity in SK-Mel-147 cells, which are highly resistant to trametinib. These findings suggest a role of the Rho/MRTF-pathway in intrinsic trametinib resistance in a subset of NRAS mutant melanoma cell lines and highlight the therapeutic potential of concurrently targeting the Rho/MRTF-pathway and MEK in NRAS mutant melanomas.

10.
Sci Rep ; 10(1): 16551, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024171

RESUMEN

The neurodegenerative Alzheimer's disease (AD) affects more than 30 million people worldwide. There is thus far no cure or prevention for AD. Aggregation of hyperphosphorylated tau in the brain correlates with the cognitive decline of patients of AD and other neurodegenerative tauopathies. Intracerebral injection of tau aggregates isolated from tauopathy brains causes similar pathology in the recipient mice, demonstrating the pathogenic role of abnormally phosphorylated tau. Compounds controlling the aggregation of hyperphosphorylated tau therefore are probable modulators for the disease. Here we report the use of recombinant hyperphosphorylated tau (p-tau) to identify potential tauopathy therapeutics and risk factors. Hyperphosphorylation renders tau prone to aggregate and to impair cell viability. Taking advantage of these two characters of p-tau, we performed a screen of a 1280-compound library, and tested a selective group of prescription drugs in p-tau aggregation and cytotoxicity assays. R-(-)-apomorphine and raloxifene were found to be p-tau aggregation inhibitors that protected p-tau-treated cells. In contrast, a subset of benzodiazepines exacerbated p-tau cytotoxicity apparently via enhancing p-tau aggregation. R-(-)apomorphine and raloxifene have been shown to improve cognition in animals or in humans, whereas benzodiazepines were linked to increased risks of dementia. Our results demonstrate the feasibility and potential of using hyperphosphorylated tau-based assays for AD drug discovery and risk factor identification.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Apomorfina/farmacología , Cognición/efectos de los fármacos , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos , Medicamentos bajo Prescripción/farmacología , Agregado de Proteínas/efectos de los fármacos , Clorhidrato de Raloxifeno/farmacología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Apomorfina/uso terapéutico , Benzodiazepinas/efectos adversos , Humanos , Fosforilación/efectos de los fármacos , Medicamentos bajo Prescripción/uso terapéutico , Clorhidrato de Raloxifeno/uso terapéutico , Factores de Riesgo
11.
Mol Neurobiol ; 57(11): 4704-4719, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32780352

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder without a cure or prevention to date. Hyperphosphorylated tau forms the neurofibrillary tangles (NFTs) that correlate well with the progression of cognitive impairments. Animal studies demonstrated the pathogenic role of hyperphosphorylated tau. Understanding how abnormal phosphorylation renders a normal tau prone to form toxic fibrils is key to delineating molecular pathology and to developing efficacious drugs for AD. Production of a tau bearing the disease-relevant hyperphosphorylation and molecular characters is a pivotal step. Here, we report the preparation and characterization of a recombinant hyperphosphorylated tau (p-tau) with strong relevance to disease. P-tau generated by the PIMAX approach resulted in phosphorylation at multiple epitopes linked to the progression of AD neuropathology. In stark contrast to unmodified tau that required an aggregation inducer, and which had minimal effects on cell functions, p-tau formed inducer-free fibrils that triggered a spike of mitochondrial superoxide, induced apoptosis, and caused cell death at sub-micromolar concentrations. P-tau-induced apoptosis was suppressed by inhibitors for reactive oxygen species. Hyperphosphorylation apparently caused rapid formation of a disease-related conformation. In both aggregation and cytotoxicity, p-tau exhibited seeding activities that converted the unmodified tau into a cytotoxic species with an increased propensity for fibrillization. These characters of p-tau are consistent with the emerging view that hyperphosphorylation causes tau to become an aggregation-prone and cytotoxic species that underlies diffusible pathology in AD and other tauopathies. Our results further suggest that p-tau affords a feasible tool for Alzheimer's disease mechanistic and drug discovery studies.


Asunto(s)
Agregado de Proteínas , Proteínas tau/metabolismo , Fenómenos Biofísicos , Muerte Celular , Línea Celular , Supervivencia Celular , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción , Fosforilación , Unión Proteica , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo , Superóxidos/metabolismo
12.
J Biol Chem ; 295(34): 12153-12166, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32636305

RESUMEN

Pheromones play critical roles in habitat identification and reproductive behavior synchronization in the sea lamprey (Petromyzon marinus). The bile acid 3-keto petromyzonol sulfate (3kPZS) is a major component of the sex pheromone mixture from male sea lamprey that induces specific olfactory and behavioral responses in conspecific individuals. Olfactory receptors interact directly with pheromones, which is the first step in their detection, but identifying the cognate receptors of specific pheromones is often challenging. Here, we deorphanized two highly related odorant receptors (ORs), OR320a and OR320b, of P. marinus that respond to 3kPZS. In a heterologous expression system coupled to a cAMP-responsive CRE-luciferase, OR320a and OR320b specifically responded to C24 5α-bile acids, and both receptors were activated by the same set of 3kPZS analogs. OR320a displayed larger responses to all 3kPZS analogs than did OR320b. This difference appeared to be largely determined by a single amino acid residue, Cys-792.56, the C-terminal sixth residue relative to the most conserved residue in the second transmembrane domain (2.56) of OR320a. This region of TM2 residues 2.56-2.60 apparently is critical for the detection of steroid compounds by odorant receptors in lamprey, zebrafish, and humans. Finally, we identified OR320 orthologs in Japanese lamprey (Lethenteron camtschaticum), suggesting that the OR320 family may be widely present in lamprey species and that OR320 may be under purifying selection. Our results provide a system to examine the origin of olfactory steroid detection in vertebrates and to define a highly conserved molecular mechanism for steroid-ligand detection by G protein-coupled receptors.


Asunto(s)
Ácidos Cólicos , Proteínas de Peces , Lampreas , Feromonas , Receptores Odorantes , Animales , Ácidos Cólicos/química , Ácidos Cólicos/farmacología , Proteínas de Peces/biosíntesis , Proteínas de Peces/química , Proteínas de Peces/genética , Lampreas/genética , Lampreas/metabolismo , Feromonas/química , Feromonas/farmacología , Receptores Odorantes/biosíntesis , Receptores Odorantes/química , Receptores Odorantes/genética
13.
bioRxiv ; 2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32511305

RESUMEN

The repurposing of existing drugs offers the potential to expedite therapeutic discovery against the current COVID-19 pandemic caused by the SARS-CoV-2 virus. We have developed an integrative approach to predict repurposed drug candidates that can reverse SARS-CoV-2-induced gene expression in host cells, and evaluate their efficacy against SARS-CoV-2 infection in vitro. We found that 13 virus-induced gene expression signatures computed from various viral preclinical models could be reversed by compounds previously identified to be effective against SARS- or MERS-CoV, as well as drug candidates recently reported to be efficacious against SARS-CoV-2. Based on the ability of candidate drugs to reverse these 13 infection signatures, as well as other clinical criteria, we identified 10 novel candidates. The four drugs bortezomib, dactolisib, alvocidib, and methotrexate inhibited SARS-CoV-2 infection-induced cytopathic effect in Vero E6 cells at < 1 µM, but only methotrexate did not exhibit unfavorable cytotoxicity. Although further improvement of cytotoxicity prediction and bench testing is required, our computational approach has the potential to rapidly and rationally identify repurposed drug candidates against SARS-CoV-2. The analysis of signature genes induced by SARS-CoV-2 also revealed interesting time-dependent host response dynamics and critical pathways for therapeutic interventions (e.g. Rho GTPase activation and cytokine signaling suppression).

14.
Sci Rep ; 9(1): 10278, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311976

RESUMEN

Obesity is associated with ~40% of cancer diagnoses but there are currently no effective preventive strategies, illustrating a need for chemoprevention. We previously demonstrated that fibroblast growth factor 2 (FGF2) from adipose tissue stimulates malignant transformation, as measured by growth in soft agar, the gold-standard in vitro transformation assay. Because the soft agar assay is unsuitable for high throughput screens (HTS), we developed a novel method using 3D growth in ultra-low attachment conditions as an alternative to growth in agar to discover compounds that inhibit transformation. Treating non-tumorigenic, skin epithelial JB6 P+ cells with FGF2 stimulates growth in ultra-low attachment conditions analogous to growth in the soft agar. This transformation HTS identified picropodophyllin, an insulin growth factor 1 receptor (IGF1R) inhibitor, and fluvastatin, an HMG-CoA reductase inhibitor, as potential chemopreventive agents. These compounds were validated for efficacy using two non-tumorigenic cell lines in soft agar. Another IGF1R inhibitor and other statins were also tested and several were able to inhibit growth in soft agar. This novel 3D HTS platform is fast, robust and has the potential to identify agents for obesity-associated cancer prevention.


Asunto(s)
Antineoplásicos/farmacología , Transformación Celular Neoplásica/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Neoplasias/prevención & control , Obesidad/complicaciones , Animales , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fluvastatina/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Modelos Biológicos , Obesidad/metabolismo , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacología , Piel/citología , Piel/efectos de los fármacos
15.
PLoS Biol ; 17(7): e3000332, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31287811

RESUMEN

Semen is fundamental for sexual reproduction. The non-sperm part of ejaculated semen, or seminal plasma, facilitates the delivery of sperm to the eggs. The seminal plasma of some species with internal fertilization contains anti-aphrodisiac molecules that deter promiscuity in post-copulatory females, conferring fitness benefits to the ejaculating male. By contrast, in some taxa with external fertilization such as fish, exposure to semen promotes spawning behaviors. However, no specific compounds in semen have been identified as aphrodisiac pheromones. We sought to identify a pheromone from the milt (fish semen) of sea lamprey (Petromyzon marinus), a jawless fish that spawns in lek-like aggregations in which each spermiating male defends a nest, and ovulatory females move from nest to nest to mate. We postulated that milt compounds signal to ovulatory females the presence of spawning spermiating males. We determined that spermine, an odorous polyamine initially identified from human semen, is indeed a milt pheromone. At concentrations as low as 10-14 molar, spermine stimulated the lamprey olfactory system and attracted ovulatory females but did not attract males or pre-ovulatory females. We found spermine activated a trace amine-associated receptor (TAAR)-like receptor in the lamprey olfactory epithelium. A novel antagonist to that receptor nullified the attraction of ovulatory females to spermine. Our results elucidate a mechanism whereby a seminal plasma pheromone attracts ready-to-mate females and implicates a possible conservation of the olfactory detection of semen from jawless vertebrates to humans. Milt pheromones may also have management implications for sea lamprey populations.


Asunto(s)
Petromyzon/fisiología , Feromonas/metabolismo , Semen/metabolismo , Atractivos Sexuales/metabolismo , Espermatozoides/fisiología , Espermina/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Petromyzon/metabolismo , Reproducción/fisiología , Espermatozoides/metabolismo
16.
J Med Chem ; 62(9): 4350-4369, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30951312

RESUMEN

Through a phenotypic high-throughput screen using a serum response element luciferase promoter, we identified a novel 5-aryl-1,3,4-oxadiazol-2-ylthiopropionic acid lead inhibitor of Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF)-mediated gene transcription with good potency (IC50 = 180 nM). We were able to rapidly improve the cellular potency by 5 orders of magnitude guided by sharply defined and synergistic SAR. The remarkable potency and depth of the SAR, as well as the relatively low molecular weight of the series, suggests, but does not prove, that binding to the unknown molecular target may be occurring through a covalent mechanism. The series nevertheless has no observable cytotoxicity up to 100 µM. Ensuing pharmacokinetic optimization resulted in the development of two potent and orally bioavailable anti-fibrotic agents that were capable of dose-dependently reducing connective tissue growth factor gene expression in vitro as well as significantly reducing the development of bleomycin-induced dermal fibrosis in mice in vivo.


Asunto(s)
Ácidos Carboxílicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Fibrosis/tratamiento farmacológico , Oxadiazoles/uso terapéutico , Factor de Respuesta Sérica/antagonistas & inhibidores , Transactivadores/antagonistas & inhibidores , Animales , Ácidos Carboxílicos/síntesis química , Ácidos Carboxílicos/farmacocinética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacocinética , Femenino , Fibrosis/patología , Ratones Endogámicos C57BL , Microsomas Hepáticos/efectos de los fármacos , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/farmacocinética , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/patología , Transducción de Señal/efectos de los fármacos , Piel/patología , Relación Estructura-Actividad , Transcripción Genética/efectos de los fármacos , Proteínas de Unión al GTP rho/antagonistas & inhibidores
17.
PLoS One ; 14(1): e0210525, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30625228

RESUMEN

Werner syndrome (WS), an autosomal recessive genetic disorder, displays accelerated clinical symptoms of aging leading to a mean lifespan less than 50 years. The WS helicase-nuclease (WRN) is involved in many important pathways including DNA replication, recombination and repair. Replicating cells are dependent on helicase activity, leading to the pursuit of human helicases as potential therapeutic targets for cancer treatment. Small molecule inhibitors of DNA helicases can be used to induce synthetic lethality, which attempts to target helicase-dependent compensatory DNA repair pathways in tumor cells that are already genetically deficient in a specific pathway of DNA repair. Alternatively, helicase inhibitors may be useful as tools to study the specialized roles of helicases in replication and DNA repair. In this study, approximately 350,000 small molecules were screened based on their ability to inhibit duplex DNA unwinding by a catalytically active WRN helicase domain fragment in a high-throughput fluorometric assay to discover new non-covalent small molecule inhibitors of the WRN helicase. Select compounds were screened to exclude ones that inhibited DNA unwinding by other helicases in the screen, bound non-specifically to DNA, acted as irreversible inhibitors, or possessed unfavorable chemical properties. Several compounds were tested for their ability to impair proliferation of cultured tumor cells. We observed that two of the newly identified WRN helicase inhibitors inhibited proliferation of cancer cells in a lineage-dependent manner. These studies represent the first high-throughput screen for WRN helicase inhibitors and the results have implications for anti-cancer strategies targeting WRN in different cancer cells and genetic backgrounds.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Helicasa del Síndrome de Werner/antagonistas & inhibidores , Biocatálisis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN/metabolismo , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Fluorometría , Humanos , Concentración 50 Inhibidora , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/química , Helicasa del Síndrome de Werner/metabolismo
18.
ACS Pharmacol Transl Sci ; 2(2): 92-100, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-32039344

RESUMEN

A series of compounds (including CCG-1423 and CCG-203971) discovered through an MRTF/SRF-dependent luciferase screen has shown remarkable efficacy in a variety of in vitro and in vivo models, including significant reduction of melanoma metastasis and bleomycin- induced fibrosis. Although these compounds are efficacious in these disease models, the molecular target is unknown. Here, we describe affinity isolation-based target identification efforts which yielded pirin, an iron-dependent cotranscription factor, as a target of this series of compounds. Using biophysical techniques including isothermal titration calorimetry and X-ray crystallography, we verify that pirin binds these compounds in vitro. We also show with genetic approaches that pirin modulates MRTF- dependent luciferase reporter activity. Finally, using both siRNA and a previously validated pirin inhibitor, we show a role for pirin in TGF-ß- induced gene expression in primary dermal fibroblasts. A recently developed analog, CCG-257081, which co crystallizes with pirin, is also effective in the prevention of bleomycin-induced dermal fibrosis.

19.
Oncotarget ; 9(69): 33098-33109, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30237854

RESUMEN

Feline oral squamous cell carcinomas (FOSCC) are highly aggressive neoplasms with short survival times despite multimodal treatment. FOSCC are similar to squamous cell carcinomas of the head and neck (SCCHN) in humans, which also present therapeutic challenges. The current study was undertaken to identify novel chemotherapeutics using FOSCC cell lines. A high throughput drug screen using 1,952 drugs was performed to identify chemotherapeutics for further investigation. Two of the drugs identified in the drug screen, actinomycin D and methotrexate, and two drugs with similar molecular targets to drugs found to be efficacious in the screening, dinaciclib and flavopiridol, were selected for further investigation. Drug inhibition profiles were generated for each drug and cell line using an MTS assay. In addition, the effects of the drugs of interest on cell cycle progression were analyzed via a propidium iodide DNA labeling assay. Changes in caspase-3/7 activity after treatment with each drug were also determined. The findings demonstrated effectiveness of the drugs at nanomolar concentrations with sensitivity varying across cell lines. With all of the drugs except for actinomycin D, evidence for G1 arrest was found. Dinaciclib and flavopiridol were demonstrated to induce apoptosis. The results of the study suggest that the selected drugs are potential candidates for developing novel chemotherapeutic approaches to FOSCC. Through these studies, novel therapeutic strategies for the treatment of FOSCC can be developed to provide better care for affected cats which can also serve as proof of concept studies to inform translational studies in SCCHN in humans.

20.
DNA Repair (Amst) ; 66-67: 64-71, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29747024

RESUMEN

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an ubiquitous DNA repair enzyme present in yeast, plants and animals. It removes a broad range of blocking lesions at the ends of DNA breaks. The catalytic core of TDP1 consists in a pair of conserved histidine-lysine-asparagine (HKN) motifs. Analysis of the human TDP1 (hTDP1) crystal structure reveals potential involvement of additional residues that shape the substrate binding site. In this biochemical study, we analyzed four such conserved residues, tyrosine 204 (Y204), phenylalanine 259 (F259), serine 400 (S400) and tryptophan 590 (W590). We show that the F259 residue of hTDP1 is critical for both 3'- and 5'-phosphodiesterase catalysis. We propose that the double π-π interactions of the F259 residue with the -2 and -3 nucleobases serve to position the nucleopeptide substrate in phase with the active site histidines of hTDP1. Mutating Y204 of hTDP1 to phenylalanine (Y204F), as in fly and yeast TDP1 enzymes, had minor impact on TDP1 activity. In constrast, we find that S400 enhances 3'-processing activity while it suppresses 5'-processing activity, thereby promoting specificity for 3'-substrates. W590 is selectively important for 5'-processing. These results reveal the impact of conserved amino acid residues that participate in defining the DNA binding groove around the dual HKN catalytic core motif of TDP1, and their differential roles in facilitating the 3'- vs 5'-end processing activities of hTDP1.


Asunto(s)
Dominio Catalítico , División del ADN , Daño del ADN , Hidrolasas Diéster Fosfóricas/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , ADN/metabolismo , Reparación del ADN , Humanos , Hidrolasas Diéster Fosfóricas/química , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA