Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pathol Inform ; 14: 100307, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025326

RESUMEN

Lung cancer has been the leading cause of cancer-related deaths worldwide. Early detection and diagnosis of lung cancer can greatly improve the chances of survival for patients. Machine learning has been increasingly used in the medical sector for the detection of lung cancer, but the lack of interpretability of these models remains a significant challenge. Explainable machine learning (XML) is a new approach that aims to provide transparency and interpretability for machine learning models. The entire experiment has been performed in the lung cancer dataset obtained from Kaggle. The outcome of the predictive model with ROS (Random Oversampling) class balancing technique is used to comprehend the most relevant clinical features that contributed to the prediction of lung cancer using a machine learning explainable technique termed SHAP (SHapley Additive exPlanation). The results show the robustness of GBM's capacity to detect lung cancer, with 98.76% accuracy, 98.79% precision, 98.76% recall, 98.76% F-Measure, and 0.16% error rate, respectively. Finally, a mobile app is developed incorporating the best model to show the efficacy of our approach.

2.
Heliyon ; 9(1): e12705, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36685464

RESUMEN

Online communities provide facilities to share public opinions and or sentiments on a wide range of subjects, from routine topics to vital issues of critical interest. Nowadays, many higher education institutions (HEIs) recognize the value of students' sentiments and evaluate users' concerns for the successful adaptation of mobile learning applications (MLAs). While digital learning has been extensively studied previously, little has been known about why MLA is underutilized. Therefore, this study extends the literature by proposing the SentiTAM model underlying technology acceptance model (TAM), and students' sentiments on MLA platforms. A self-administered cross-sectional survey of 350 MLA users' data was analyzed through structural equation modeling (SEM) using the AMOS package program. In addition, we have performed sentiment analysis on students' opinions gathered through Google discussion forums and Twitter. The results show that MLA use intention is strongly influenced by sentiments and self-motivation, while perceived usefulness and perceived ease of use directly influence MLA usage. To the best of our knowledge, this study is the first attempt in MLA that investigates several vital factors, including sentiments as a multi-perspective tool and motivational factors with core constructs of TAM. The findings assist developing countries make smart decisions about how to use MLA with emerging technology.

3.
Sci Rep ; 12(1): 21796, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526680

RESUMEN

COVID-19 is one of the most life-threatening and dangerous diseases caused by the novel Coronavirus, which has already afflicted a larger human community worldwide. This pandemic disease recovery is possible if detected in the early stage. We proposed an automated deep learning approach from Computed Tomography (CT) scan images to detect COVID-19 positive patients by following a four-phase paradigm for COVID-19 detection: preprocess the CT scan images; remove noise from test image by using anisotropic diffusion techniques; make a different segment for the preprocessed images; and train and test COVID-19 detection using Convolutional Neural Network (CNN) models. This study employed well-known pre-trained models, including AlexNet, ResNet50, VGG16 and VGG19 to evaluate experiments. 80% of images are used to train the network in the detection process, while the remaining 20% are used to test it. The result of the experiment evaluation confirmed that the VGG19 pre-trained CNN model achieved better accuracy (98.06%). We used 4861 real-life COVID-19 CT images for experiment purposes, including 3068 positive and 1793 negative images. These images were acquired from a hospital in Sao Paulo, Brazil and two other different data sources. Our proposed method revealed very high accuracy and, therefore, can be used as an assistant to help professionals detect COVID-19 patients accurately.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico por imagen , Brasil , Cintigrafía , Pacientes , Tomografía Computarizada por Rayos X
4.
Eng Rep ; : e12550, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35941912

RESUMEN

A novel coronavirus causing the severe and fatal respiratory syndrome was identified in China, is now producing outbreaks in more than 200 countries around the world, and became pandemic by the time. In this article, a modified version of the well-known mathematical epidemic model susceptible-infected-recovered (SIR) is used to analyze the epidemic's course of COVID-19 in eight different countries of the South Asian Association for Regional Cooperation (SAARC). To achieve this goal, the parameters of the SIR model are identified by using publicly available data for the corresponding countries: Afghanistan, Bangladesh, Bhutan, India, the Maldives, Nepal, Pakistan, and Sri Lanka. Based on the prediction model, we estimated the epidemic trend of COVID-19 outbreak in SAARC countries for 20, 90, and 180 days, respectively. A short-mid-long term prediction model has been designed to understand the early dynamics of the COVID-19 epidemic in the southeast Asian region. The maximum and minimum basic reproduction numbers (R 0 = 1.33 and 1.07) for SAARC countries are predicted to be in Pakistan and Bhutan. We equate simulation results with real data in the SAARC countries on the COVID-19 outbreak, and predicted different scenarios using the modified SIR prediction model. Our results should provide policymakers with a method for evaluating the impacts of possible interventions, including lockdown and social distancing, as well as testing and contact tracking.

5.
PLoS One ; 17(7): e0270933, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35857776

RESUMEN

Dengue fever is a severe disease spread by Aedes mosquito-borne dengue viruses (DENVs) in tropical areas such as Bangladesh. Since its breakout in the 1960s, dengue fever has been endemic in Bangladesh, with the highest concentration of infections in the capital, Dhaka. This study aims to develop a machine learning model that can use relevant information about the factors that cause Dengue outbreaks within a geographic region. To predict dengue cases in 11 different districts of Bangladesh, we created a DengueBD dataset and employed two machine learning algorithms, Multiple Linear Regression (MLR) and Support Vector Regression (SVR). This research also explores the correlation among environmental factors like temperature, rainfall, and humidity with the rise and decline trend of Dengue cases in different cities of Bangladesh. The entire dataset was divided into an 80:20 ratio, with 80 percent used for training and 20% used for testing. The research findings imply that, for both the MLR with 67% accuracy along with Mean Absolute Error (MAE) of 4.57 and SVR models with 75% accuracy along with Mean Absolute Error (MAE) of 4.95, the number of dengue cases reduces throughout the winter season in the country and increases mainly during the rainy season in the next ten months, from August 2021 to May 2022. Importantly, Dhaka, Bangladesh's capital, will see the maximum number of dengue patients during this period. Overall, the results of this data-driven analysis show that machine learning algorithms have enormous potential for predicting dengue epidemics.


Asunto(s)
Dengue , Animales , Bangladesh/epidemiología , Dengue/epidemiología , Humanos , Aprendizaje Automático , Mosquitos Vectores , Factores Socioeconómicos
6.
Hum Vaccin Immunother ; 18(1): 2025009, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35050838

RESUMEN

The next big step in combating the COVID-19 pandemic will be gaining widespread acceptance of a vaccination campaign for SARS-CoV-2. This study aims to report detailed Spatiotemporal analysis and result-oriented storytelling of the COVID-19 vaccination campaign across the globe. An exploratory data analysis (EDA) with interactive data visualization using various python libraries was conducted. The results show that, globally, with the rapid vaccine development and distribution, people from the different regions are also getting vaccinated and revealing their positive intent toward the COVID-19 vaccination. The outcomes of this exploration also established that mass vaccination campaigns in populated countries including Brazil, China, India, and the US reduced the number of daily COVID-19 deaths and confirmed cases. Overall, our findings contribute to current policy-relevant research by establishing a link between increasing immunization rates and lowering COVID-19's rising curve.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Análisis de Datos , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Vacunación
7.
Int J Inf Technol ; 13(6): 2313-2322, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34541449

RESUMEN

We are living in the era of the fourth industrial revolution, which also treated as 4IR or Industry 4.0. Generally, 4IR considered as the mixture of robotics, artificial intelligence (AI), quantum computing, the Internet of Things (IoT) and other frontier technologies. It is obvious that nowadays a plethora of smart devices is providing services to make the daily life of humans easier. However, in the morning most people around the globe use a traditional mirror while preparing themselves for daily tasks. The aim is to build a low-cost intelligent mirror system that can display a variety of details based on user recommendations. Therefore, in this article, Internet of Things (IoT) and AI-based smart mirror is introduced that will support the users to receive the necessary daily update of weather information, date, time, calendar, to-do list, updated news headlines, traffic updates, COVID-19 cases status and so on. Moreover, a face detection method also implemented with the smart mirror to construct the architecture more secure. Our proposed MirrorME application provides a success rate of nearly 87% in interacting with the features of face recognition and voice input. The mirror is capable of delivering multimedia facilities while maintaining high levels of security within the device.

8.
SN Compr Clin Med ; 2(10): 1724-1732, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32864577

RESUMEN

Globally, there is an obvious concern about the fact that the evolving 2019-nCoV coronavirus is a worldwide public health threat. The appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China at the end of 2019 triggered a major global epidemic, which is now a major community health issue. As of August 13, 2020, according to the Institute of Epidemiology, Disease Control and Research (IEDCR), Bangladesh has reported 269,095 confirmed cases between 8 March and 13 August 2020, with > 1.30% of mortality rate and > 57% of recovery rate. COVID-19 outbreak is evolving so rapidly in Bangladesh; therefore, the availability of epidemiological data and its sensible analysis are essential to direct strategies for situational awareness and intervention. This article presents an exploratory data analysis approach to collect and analyze COVID-19 data on epidemiological outbreaks based on the first publicly available COVID-19 Daily Dataset of Bangladesh. Various publicly open data sources on the outbreak of COVID-19 provided by the IEDCR, World Health Organization (WHO), Directorate General of Health Services (DGHS), and Ministry of Health and Family Welfare (MHFW) of Bangladesh have been used in this research. Visual exploratory data analysis (V-EDA) techniques have been followed in this research to understand the epidemiological characteristics of COVID-19 outbreak in different districts of Bangladesh between 8 March 2020 and 13 August 2020 and these findings were compared with those of other countries. In all, this is extremely important to promptly spread information to understand the risks of this pandemic and begin containment activities in the country.

9.
SN Compr Clin Med ; 2(11): 2506, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954210

RESUMEN

[This corrects the article DOI: 10.1007/s42399-020-00477-9.].

10.
Inform Med Unlocked ; 20: 100405, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32835082

RESUMEN

COVID-19 or novel coronavirus disease, which has already been declared as a worldwide pandemic, at first had an outbreak in a large city of China, named Wuhan. More than two hundred countries around the world have already been affected by this severe virus as it spreads by human interaction. Moreover, the symptoms of novel coronavirus are quite similar to the general seasonal flu. Screening of infected patients is considered as a critical step in the fight against COVID-19. As there are no distinctive COVID-19 positive case detection tools available, the need for supporting diagnostic tools has increased. Therefore, it is highly relevant to recognize positive cases as early as possible to avoid further spreading of this epidemic. However, there are several methods to detect COVID-19 positive patients, which are typically performed based on respiratory samples and among them, a critical approach for treatment is radiologic imaging or X-Ray imaging. Recent findings from X-Ray imaging techniques suggest that such images contain relevant information about the SARS-CoV-2 virus. Application of Deep Neural Network (DNN) techniques coupled with radiological imaging can be helpful in the accurate identification of this disease, and can also be supportive in overcoming the issue of a shortage of trained physicians in remote communities. In this article, we have introduced a VGG-16 (Visual Geometry Group, also called OxfordNet) Network-based Faster Regions with Convolutional Neural Networks (Faster R-CNN) framework to detect COVID-19 patients from chest X-Ray images using an available open-source dataset. Our proposed approach provides a classification accuracy of 97.36%, 97.65% of sensitivity, and a precision of 99.28%. Therefore, we believe this proposed method might be of assistance for health professionals to validate their initial assessment towards COVID-19 patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...