Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393024

RESUMEN

Based on the results of our own preliminary studies, the derivative of the marine alkaloid fascaplysin containing a phenyl substituent at C-9 was selected to evaluate the therapeutic potential in vivo and in vitro. It was shown that this compound has outstandingly high antimicrobial activity against Gram-positive bacteria, including antibiotic-resistant strains in vitro. The presence of a substituent at C-9 of the framework is of fundamental importance, since its replacement to neighboring positions leads to a sharp decrease in the selectivity of the antibacterial action, which indicates the presence of a specific therapeutic target in bacterial cells. On a model of the acute bacterial sepsis in mice, it was shown that the lead compound was more effective than the reference antibiotic vancomycin seven out of nine times. However, ED50 value for 9-phenylfascaplysin (7) was similar for the unsubstituted fascaplysin (1) in vivo, despite the former being significantly more active than the latter in vitro. Similarly, assessments of the anticancer activity of compound 7 against various variants of Ehrlich carcinoma in mice demonstrated its substantial efficacy. To conduct a structure-activity relationship (SAR) analysis and searches of new candidate compounds, we synthesized a series of analogs of 9-phenylfascaplysin with varying aryl substituents. However, these modifications led to the reduced aqueous solubility of fascaplysin derivatives or caused a loss of their antibacterial activity. As a result, further research is required to explore new avenues for enhancing its pharmacokinetic characteristics, the modification of the heterocyclic framework, and optimizing of treatment regimens to harness the remarkable antimicrobial potential of fascaplysin for practical usage.


Asunto(s)
Antibacterianos , Antiinfecciosos , Carbolinas , Indolizinas , Compuestos de Amonio Cuaternario , Animales , Ratones , Antibacterianos/farmacología , Relación Estructura-Actividad , Indoles , Pruebas de Sensibilidad Microbiana
2.
Eur J Med Chem ; 268: 116222, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387333

RESUMEN

G-quadruplex (G4) ligands attract considerable attention as potential anticancer therapeutics. In this study we proposed an original scheme for synthesis of azole-fused anthraquinones and prepared a series of G4 ligands carrying amino- or guanidinoalkylamino side chains. The heterocyclic core and structure of the terminal groups strongly affect on binding to G4-forming oligonucleotides, cellular accumulation and antitumor potency of compounds. In particular, thiadiazole- and selenadiazole- but not triazole-based ligands inhibit the proliferation of tumor cells (e.g. K562 leukemia) and stabilize primarily telomeric and c-MYC G4s. Anthraselenadiazole derivative 11a showed a good affinity to c-MYC G4 in vitro and down-regulated expression of c-MYC oncogene in cellular conditions. Further studies revealed that anthraselenadiazole 11a provoked cell cycle arrest and apoptosis in a dose- and time-dependent manner inhibiting K562 cells growth. Taken together, this work gives a valuable example that the closely related heterocycles may cause a significant difference in biological properties of G4 ligands.


Asunto(s)
Antineoplásicos , G-Cuádruplex , Antineoplásicos/química , Antraquinonas/química , Triazoles/farmacología , Proliferación Celular , Puntos de Control del Ciclo Celular , Ligandos
3.
Eur J Med Chem ; 265: 116103, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176358

RESUMEN

In our pursuit of developing novel analogs of anthracyclines with enhanced antitumor efficacy and safety, we have designed a synthesis scheme for 4,11-dihydroxy-5,10-dioxocyclopenta[b]anthracene-2-carboxamides. These newly synthesized compounds exhibit remarkable antiproliferative potency against various mammalian tumor cell lines, including those expressing activated mechanisms of multidrug resistance. The structure of the diamine moiety in the carboxamide side chain emerges as a critical determinant for anticancer activity and interaction with key targets such as DNA, topoisomerase 1, and ROS induction. Notably, the introduced modification to the doxorubicin structure results in significantly increased lipophilicity, cellular uptake, and preferential distribution in lysosomes. Consequently, while maintaining an impact on anthracyclines targets, these novel derivatives also demonstrate the potential to induce cytotoxicity through pathways associated with lysosomes. In summary, derivatives of cyclic diamines, particularly 3-aminopyrrolidine, can be considered a superior choice compared to aminosugars for incorporation into natural and semi-synthetic anthracyclines or new anthraquinone derivatives, aiming to circumvent efflux-mediated drug resistance.


Asunto(s)
Antineoplásicos , Animales , Antineoplásicos/química , Antraquinonas/química , Ciclopentanos , Ensayos de Selección de Medicamentos Antitumorales , Antibióticos Antineoplásicos/farmacología , Antraciclinas , Inhibidores de Topoisomerasa II/farmacología , Relación Estructura-Actividad , Mamíferos/metabolismo
4.
Antibiotics (Basel) ; 12(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36671352

RESUMEN

Polyene antifungal amphotericin B (AmB) has been used for over 60 years, and remains a valuable clinical treatment for systemic mycoses, due to its broad antifungal activity and low rate of emerging resistance. There is no consensus on how exactly it kills fungal cells but it is certain that AmB and the closely-related nystatin (Nys) can form pores in membranes and have a higher affinity towards ergosterol than cholesterol. Notably, the high nephro- and hemolytic toxicity of polyenes and their low solubility in water have led to efforts to improve their properties. We present the synthesis of new amphotericin and nystatin amides and a comparative study of the effects of identical modifications of AmB and Nys on the relationship between their structure and properties. Generally, increases in the activity/toxicity ratio were in good agreement with increasing ratios of selective permeabilization of ergosterol- vs. cholesterol-containing membranes. We also show that the introduced modifications had an effect on the sensitivity of mutant yeast strains with alterations in ergosterol biosynthesis to the studied polyenes, suggesting a varying affinity towards intermediate ergosterol precursors. Three new water-soluble nystatin derivatives showed a prominent improvement in safety and were selected as promising candidates for drug development.

5.
ACS Infect Dis ; 9(1): 42-55, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36563312

RESUMEN

Natamycin is a macrolide polyene antibiotic, characterized by a potent broad spectrum antifungal activity and low toxicity. However, it is not used for the treatment of systemic mycoses due to its low bioavailability and low solubility in aqueous solutions. In order to create new semisynthetic antifungal agents for treatment of mycoses, a series of water-soluble amides of natamycin were synthesized. Antifungal activities of natamycin derivatives were investigated against Candida spp., including a panel of Candida auris clinical isolates and filamentous fungi. Toxicity for mammalian cells was assayed by monitoring antiproliferative activity against human postnatal fibroblasts (HPF) and human embryonic kidney cells (HEK293). By comparing leakage of contents from ergosterol versus cholesterol containing vesicles, a ratio that characterizes the efficacy and safety of natamycin and its derivatives was determined (EI, efficiency index). Ability of all tested semisynthetic natamycines to prevent proliferation of the yeast Candida spp. cells was comparable or even slightly higher to those of parent antibiotic. Interestingly, amide 8 was more potent than natamycin (1) against all tested C. auris strains (MIC values 2 µg/mL vs 8 µg/mL, respectively). Among 7 derivatives, amide 10 with long lipophilic side chains showed the highest EI and strong antifungal activity in vitro but was more toxic against HPF. In vivo experiments with amide 8 showed in vivo efficacy on a mouse candidemia model with a larger LD50/ED50 ratio in comparison to amphotericin B.


Asunto(s)
Micosis , Natamicina , Animales , Ratones , Humanos , Natamicina/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Células HEK293 , Polienos/farmacología , Micosis/tratamiento farmacológico , Candida , Saccharomyces cerevisiae , Mamíferos
6.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38256865

RESUMEN

Breast and other estrogen receptor α-positive cancers tend to develop resistance to existing drugs. Chalcone derivatives possess anticancer activity based on their ability to form covalent bonds with targets acting as Michael acceptors. This study aimed to evaluate the anticancer properties of a series of chalcones (7a-l) with a sulfonamide group attached to the vinyl ketone moiety. Chalconesulfonamides showed a potent antiproliferative effect at low micromolar concentrations against several cancer cell lines, including ERα-positive 4-hydroxytamoxifen-resistant MCF7/HT2. Immunoblotting of samples treated with the lead compound 7e revealed its potent antiestrogenic activity (ERα/GREB1 axis) and induction of PARP cleavage (an apoptosis marker) in breast cancer cells. The obtained compounds represent a promising basis for further development of targeted drugs blocking hormone pathways in cancer cells.

7.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36558903

RESUMEN

The overexpression and activity of carbonic anhydrase (CA, EC 4.2.1.1) isoforms CA IX and CA XII promote the accumulation of exceeding protons and acidosis in the extracellular tumor environment. Sulfonamides are effective inhibitors of most families of CAs. In this study, using scaffold-hopping, indoline-5-sulfonamide analogs 4a-u of the CA IX-selective inhibitor 3 were designed and synthesized to evaluate their biological properties. 1-Acylated indoline-5-sulfonamides demonstrated inhibitory activity against tumor-associated CA IX and XII with KI values up to 132.8 nM and 41.3 nM. Compound 4f, as one of the most potent inhibitors of CA IX and XII, exhibits hypoxic selectivity, suppressing the growth of MCF7 cells at 12.9 µM, and causes partial inhibition of hypoxia-induced CA IX expression in A431 skin cancer cells. 4e and 4f reverse chemoresistance to doxorubicin of K562/4 with overexpression of P-gp.

8.
Molecules ; 27(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35889538

RESUMEN

A series of novel cobalt bis(dicarbollide)-curcumin conjugates were synthesized. Two conjugates were obtained through the nucleophilic ring-opening reaction of the 1,4-dioxane and tetrahydropyran derivatives of cobalt bis(dicarbollide) with the OH group of curcumin, and using two equiv. of the oxonium derivatives, two other conjugates containing two cobalt bis(dicarbollide) units per molecule were obtained. In contrast to curcumin, the conjugates obtained were found to be non-cytotoxic against both tumor and normal cell lines. The analysis of the intracellular accumulation of the conjugates by flow cytometry showed that all cobalt bis(dicarbollide)-curcumin conjugates entered HCT116 colorectal carcinoma cells in a time-dependent manner. New non-cytotoxic conjugates contain a large amount of boron atoms in the biomolecule and can potentially be used for further biological research into boron neutron capture therapy (BNCT).


Asunto(s)
Terapia por Captura de Neutrón de Boro , Curcumina , Neoplasias , Boro/farmacología , Compuestos de Boro , Cobalto , Curcumina/farmacología , Humanos
9.
Bioorg Chem ; 127: 105925, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35728293

RESUMEN

Chemical modifications of anthraquiones are aimed at novel derivatives with improved antitumor properties. Emergence of multidrug resistance (MDR) due to overexpression of transmembrane ATP binding cassette transporters, in particular, MDR1/P-glycoprotein (Pgp), can limit the use of anthraquinone based drugs. Previously we have demonstrated that annelation of modified five-membered heterocyclic rings with the anthraquinone core yielded a series of compounds with optimized antitumor properties. In the present study we synthesized a series of anthraquinone derivatives with six-membered heterocycles. Selected new compounds showed the ability to kill parental and MDR tumor cell lines at low micromolar concentrations. Molecular docking into the human Pgp model revealed a stronger interaction of 2-methylnaphtho[2,3-g]quinoline-3-carboxamide 17 compared to naphtho[2,3-f]indole-3-carboxamide 3. The time course of intracellular accumulation of compound 17 in parental K562 leukemia cells and in Pgp-positive K562/4 subline was similar. In contrast, compound 3 was readily effluxed from K562/4 cells and was significantly less potent for this subline than for K562 cells. Together with reported strategies of drug optimization of the anthracycline core, these results add ring expansion to the list of perspective modifications of heteroarene-fused anthraquinones.


Asunto(s)
Antineoplásicos , Antraquinonas/química , Antraquinonas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Simulación del Acoplamiento Molecular
10.
Eur J Med Chem ; 228: 113997, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34902732

RESUMEN

Carbonic anhydrase IX is a promising target for the search for new antitumor compounds with improved properties. Using the molecular hybridization approach, on the basis of structures of a selective carbonic anhydrase IX inhibitor 3 and an activator of apoptosis 2 (1), a series of 1-substituted isatin-5-sulfonamides 5a-5u were designed and synthesized. The study of the inhibitory activity of isatin-5-sulfonamides showed the ability to inhibit I, II, IX, XII isoforms at nano- and micromolar concentrations. Docking of compounds 5e and 5k into the active site of II and IX carbonic anhydrase isoforms showed the coordination of sulfonamidate anions with zinc cations, as well as a number of additional hydrophobic interactions. The trifluoromethylthio derivative 5r suppressed the growth of tumor cells at low micromolar concentrations, maintaining activity on resistant lines and under hypoxic conditions. Immunoblotting of MCF7 cells treated with the 5r revealed its antiestrogenic activity and ability to activate apoptosis in tumor cells.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Isatina/farmacología , Sulfonamidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isatina/síntesis química , Isatina/química , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
11.
Eur J Med Chem ; 221: 113521, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34082225

RESUMEN

The anthraquinone scaffold has long been known as a source of efficacious antitumor drugs. In particular, the various chemical modifications of the side chains in this scaffold have yielded the compounds potent for the wild type tumor cells, their counterparts with molecular determinants of altered drug response, as well as in vivo settings. Further exploring the chemotype of anticancer heteroarene-fused anthraquinones, we herein demonstrate that derivative of anthra[2,3-b]thiophene-2-carboxamide, (compound 8) is highly potent against a panel of human tumor cell lines and their drug resistant variants. Treatment with submicromolar or low micromolar concentrations of 8 for only 30 min was sufficient to trigger lethal damage of K562 chronic myelogenous leukemia cells. Compound 8 (2.5 µM, 3-6 h) induced an apoptotic cell death as determined by concomitant activation of caspases 3 and 9, cleavage of poly(ADP-ribose) polymerase, increase of Annexin V/propidium iodide double stained cells, DNA fragmentation (subG1 fraction) and a decrease of mitochondrial membrane potential. Neither a significant interaction with double stranded DNA nor strong inhibition of the DNA dependent enzyme topoisomerase 1 by 8 were detectable in cell free systems. Laser scanning confocal microscopy revealed that some amount of 8 was detectable in mitochondria as early as 5 min after the addition to the cells; exposure for 1 h caused significant morphological changes and clustering of mitochondria. The bioisosteric analog 2 in which the thiophene ring was replaced with furan was less active although the patterns of cytotoxicity of both derivatives were similar. These results point at the specific role of the sulfur atom in the antitumor properties of carboxamide derivatives of heteroarene-fused anthraquinone.


Asunto(s)
Antraquinonas/farmacología , Antineoplásicos/farmacología , Tiofenos/farmacología , Antraquinonas/síntesis química , Antraquinonas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células K562 , Estructura Molecular , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química , Células Tumorales Cultivadas
12.
J Org Chem ; 86(12): 7975-7986, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34043357

RESUMEN

Oligomycin A is a potent antibiotic and antitumor agent. However, its applications are restricted by its high toxicity and low bioavailability. In this study, we obtained Oligomycin A Diels-Alder adducts with benzoquinone and N-benzylmaleimide and determined their absolute configurations by combining 1H and ROESY NMR data with molecular mechanics conformational analysis and quantum chemical reaction modeling. The latter showed that adduct stereochemistry is controlled by hydrogen bonding of the Oligomycin A side-chain isopropanol moiety with the carbonyl group of the dienophile. Biological studies showed that the Diels-Alder modification of the Oligomycin A diene system resulted in a complex antiproliferative potential pattern. The synthesized adducts were determined to be more active against the triple-negative (ERα, PR, and HER2 negative) breast cancer cell line MDA-MB-231 and lung carcinoma cell line A-549 compared to Oligomycin A. Meanwhile, Oligomycin A was more potent against myeloid leukemia cell line K-562 and breast carcinoma cell line MCF-7 than its derivatives. Thus, modification of the diene moiety of Oligomycin A is a promising strategy for developing novel antitumor agents based on its scaffold.


Asunto(s)
Modelos Moleculares , Humanos , Células MCF-7 , Conformación Molecular , Oligomicinas/farmacología
13.
RSC Adv ; 11(61): 38782-38795, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-35493230

RESUMEN

To establish a new approach for the synthesis of quinoxaline 1,4-dioxides as hypoxia-selective cytotoxic agents, an original multi-step preparation of derivatives possessing the diamine moiety at position 7 was evaluated. Herein, we present the synthesis of a series of novel 7-amino-6-halogeno-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides 13a-h, 14a,b,g based on the regioselective Beirut reaction. Comparison of antitumor properties of derivatives possessing the diamine moiety at position 7 with structurally close congeners possessing the corresponding amino groups at position 6 revealed key differences in the cytotoxicity profiles and HIF-1α inhibition. All the synthesized 7-amino-6-halogeno derivatives 13a-h, 14a,b,g demonstrated significant cytotoxic activities against breast cancer cell lines (MCF7, MDA-MB-231) in normoxia and hypoxia with IC50 values ranging from 0.1 to 7.6 µM. Most of these novel derivatives can circumvent the multidrug resistance of tumor cells caused by P-glycoprotein over expression. The lead compounds 13a, 14a and 14b can suppress the expression of HIF-1α at low micromolar concentrations and induce apoptosis in breast cancer MCF7 cells. In addition, compound 14b effectively inhibits BCL2 and ERα expression in MCF7 cells. The current research opens a new direction for targeting hypoxia and drug resistance of cancer cells.

14.
Bioorg Chem ; 104: 104324, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33142432

RESUMEN

In this article, we describe the synthesis of 3-phenylquinoxaline-2-carbonitrile 1,4-dioxides bearing cyclic diamine residues at positions 6 or 7; the synthesis is based on the nucleophilic substitution of halogens. All synthesized 6(7)-aminoquinoxaline-2-carbonitrile 1,4-dioxides 3-6 demonstrated higher cytotoxicity and hypoxia selectivity compared to the reference agent tirapazamine against breast adenocarcinoma cell lines (MCF7, MDA-MB-231). The structure and position of the diamine residue considerably affects the antiproliferative properties of the quinoxaline-2-carbonitrile 1,4-dioxides. The introduction of a halogen atom at position 7 in the quinoxaline ring of 4a considerably increases the cytotoxicity of compounds 5a and 6a under both normoxic and hypoxic conditions. However, the most hypoxia-selective derivatives were non-halogenated 7-aminosubstituted 3-phenylquinoxaline-2-carbonitrile 1,4-dioxides 3a-j. Of the 32 novel synthesized derivatives, approximately 20 of the 6(7)-amino-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides demonstrated high antiproliferative potency against wild type leukemia cells K562 and drug-resistant subline K562/4 with the expression of p-glycoprotein (p-gp) compared to the reference agent doxorubicin, which exhibited one order of magnitude lower activity towards K562/4 cells than towards K562 cells. Lead compounds 5a and 3f inhibited HIF-1α expression and activity and induced apoptosis in hypoxic tumor cells, which was confirmed by poly(ADP-ribose)polymerase (PARP) cleavage. Moreover, 5a and 3f showed strong antiestrogenic potencies in MCF7 breast cancer cells. Thus, the described series of quinoxaline 1,4-dioxides has high anticancer potential and good aqueous solubility. Therefore, these compounds are promising for further drug development of hypoxia-targeted anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Hipoxia de la Célula/efectos de los fármacos , Descubrimiento de Drogas , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Nitrilos/farmacología , Quinoxalinas/farmacología , Receptores de Estrógenos/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Estructura Molecular , Nitrilos/síntesis química , Nitrilos/química , Quinoxalinas/síntesis química , Quinoxalinas/química , Receptores de Estrógenos/metabolismo , Relación Estructura-Actividad
15.
Int J Mol Med ; 46(4): 1335-1346, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32945360

RESUMEN

Mostotrin (MT), a novel compound, at least five orders of magnitude more soluble in water than its mother substance, was designed and synthesised from tryptanthrin (TR). Its structure was established by nuclear magnetic resonance and mass spectrometry data and confirmed by X­ray analysis, revealing that MT is a pentacyclic product with an additional pseudo­cycle formed with the participation of one intramolecular hydrogen bond. Antimicrobial activity and cytotoxic action against tumour cells in vitro, as well as anti­tumour effects, acute toxicity and anti­inflammatory activities in vivo, were evaluated. Antimicrobial properties of MT against Mycobacterium spp and Bacillus cereus ATCC 10702 appeared to be the same as that of TR, but against the other strains used it was weaker. Furthermore, MT exhibited 5­10 times higher cytotoxic activities against tumour cell lines HCT­116, МСF­7 and K­562 than TR, but was less toxic than TR (LD50 of MT was 375 mg/kg, while LD50 for TR was 75 mg/kg). Additionally, compounds MT and TR were studied in DNA binding tests. The quenching of its fluorescence on addition to DNA solution established MT to be capable of binding to DNA. Its anti­tumour action in vivo on mice with the ascitic form of Ehrlich carcinoma was promising, particularly with joint application of MT and the antitumour drug doxorubicin. In this model, the survival and life span for the doxorubicin and 1 co­treatment group were significantly higher compared to doxorubicin treatment alone. The compound MT showed a lower immunosuppressive effect than TR at the early stages of inflammation induced in mice by LPS from E. Ñoli (MT hardly inhibited the release of IL­1, IL­2, or INF­Î³). These results demonstrated that MT is a perspective hit compound for drug development. In our opinion, further evaluation on the biological effects of MT and its synthetic analogues could lead to safer and more effective anti­tumour and anti­tuberculosis agents than TR itself. MT has also the prospect of application in combination with known anti­tumour drugs for the treatment of oncological diseases.


Asunto(s)
Antiinfecciosos/síntesis química , Antineoplásicos/síntesis química , Quinazolinas/química , Agua/química , Animales , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Doxorrubicina/farmacología , Femenino , Células HCT116 , Humanos , Células K562 , Células MCF-7 , Melanoma Experimental/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Relación Estructura-Actividad
16.
Eur J Med Chem ; 199: 112294, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32428792

RESUMEN

Heteroarene-fused anthraquinone derivatives represent a class of perspective anticancer drug candidates capable of targeting multiple vital processes including drug resistance. Taking advantage of previously demonstrated potential of amide derivatives of heteroarene-fused anthraquinones, we herein dissected the role of the heterocyclic core in antitumor properties. A new series of naphtho[2,3-f]indole-3- and anthra[2,3-b]thiophene-3-carboxamides was synthesized via coupling the respective acids with cyclic diamines. New compounds demonstrated a submicromolar antiproliferative potency close to doxorubicin (Dox) against five tumor cell lines of various tissue origin. In contrast to Dox, the new compounds were similarly cytotoxic for HCT116 colon carcinoma cells (wild type p53) and their isogenic p53 knockout counterparts. Modification of the heterocyclic core changed the targeting properties: the best-in-series naphtho[2,3-f]indole-3-carboxamide 8 formed more affine complexes with DNA duplex than furan and thiophene analogs, a property that can be translated into a stronger inhibition of topoisomerase 1 mediated DNA unwinding. At tolerable doses the water soluble derivative 8 significantly inhibited tumor growth (up to 79%) and increased the lifespan (153%) of mice bearing P388 lymphoma transplants. Together with better solubility for parenteral administration and well tolerance by animals of the indole derivative 8 indicates prospects for further search of new antitumor drug candidates among the heteroarene-fused anthraquinones.


Asunto(s)
Amidas/farmacología , Antraquinonas/farmacología , Antineoplásicos/farmacología , Compuestos Heterocíclicos/farmacología , Pirroles/farmacología , Tiofenos/farmacología , Amidas/química , Animales , Antraquinonas/síntesis química , Antraquinonas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Humanos , Células K562 , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Simulación del Acoplamiento Molecular , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Pirroles/química , Relación Estructura-Actividad , Tiofenos/química
17.
Nat Prod Res ; 34(21): 3073-3081, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31075992

RESUMEN

We describe the synthesis of epi-oligomycin A, a (33S)-diastereomer of the antibiotic oligomycin A. The structure of (33S)-oligomycin A was determined by elemental analysis, spectroscopic studies, including 1D and 2D NMR spectroscopy, and mass spectrometry. Isomerization of C33 hydroxyl group led to minor changes in the potency against Aspergillus niger, Candida spp., and filamentous fungi whereas the activity against Streptomyces fradiae decreased by approximately 20-fold compared to oligomycin A. We observed that 33-epi-oligomycin A had the same activity on the human leukemia cell line K562 as oligomycin A but was more potent for the multidrug resistant subline K562/4. Non-malignant cells were less sensitive to both oligomycin isomers. Finally, our results pointed at the dependence of the cytotoxicity of oligomycins on oxygen supply.


Asunto(s)
Antibacterianos/farmacología , Oligomicinas/síntesis química , Oligomicinas/farmacología , Animales , Antibacterianos/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Aspergillus niger/efectos de los fármacos , Candida/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Perros , Resistencia a Antineoplásicos , Humanos , Células K562 , Células MCF-7 , Células de Riñón Canino Madin Darby , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Estereoisomerismo , Streptomyces/efectos de los fármacos , Relación Estructura-Actividad
18.
Eur J Med Chem ; 165: 31-45, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30659997

RESUMEN

Derivatives of the anthraquinone (anthracene-9,10-dione) such as doxorubicin, mitoxantrone and others have proved great clinical efficacy for decades. Currently the search in this exceptionally productive chemical class is aimed at optimization of antitumor properties including circumvention of drug resistance. Previously we have reported that heteroarene-fused anthraquinones fused to a 5-membered heterocyclic ring are advantageous in killing drug resistant tumor cells. Herein we present the synthesis and antitumor properties of a series of new anthra[2,3-b]furan-2-carboxamides. Vast majority of new derivatives were similarly cytotoxic to wild type tumor cell lines and their isogenic sublines with P-glycoprotein overexpression and/or p53 inactivation. Comparison of structurally close derivatives varying in their position relative to the furan moiety, that is, furan-3-carboxamide 1vs furan-2-carboxamides 5 and 6, revealed fundamental differences in the cytotoxicity profiles, formation of drug-DNA complexes, efficacy of topoisomerase 1 inhibition and mechanisms of tumor cell death. Together with previous SAR data on the role of individual substituents, these results provide evidence that regioisomerization of anthra[2,3-b]furancarboxamides generates the practically perspective derivatives whose properties may vary significantly.


Asunto(s)
Antraquinonas/farmacología , Inhibidores de Topoisomerasa I/síntesis química , Amidas , Antraquinonas/síntesis química , Antraquinonas/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Furanos , Humanos , Relación Estructura-Actividad , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/farmacología
19.
Recent Pat Anticancer Drug Discov ; 13(4): 469-472, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30039764

RESUMEN

BACKGROUND: Heliomycin (resistomycin), an antibiotic with broad spectra of biological activities including antimicrobial, antifungal, antiviral, and antiproliferative. However, an extremely low solubility in aqueous media and in the majority of organic solvents limits its practical application. OBJECTIVE: Due to a high practical potential of heliomycin, new routes of structural modification are strongly required to improve its solubility. CONCLUSION: The patent claims a series of 4-aminomethyl derivatives of heliomycin as well as a pharmaceutical composition based on it. Application of Mannich aminomethylation allowed to diversify the structure of initial antibiotic and to obtain the derivatives with significantly improved water solubility and a potent antiproliferative efficacy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Compuestos Policíclicos/síntesis química , Compuestos Policíclicos/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/farmacología , Antivirales/síntesis química , Antivirales/farmacología , Línea Celular , Proliferación Celular/fisiología , Humanos
20.
Cancer Invest ; 36(3): 199-209, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29624460

RESUMEN

A series of 3-aryl/hetarylquinoxaline-2-carbonitrile-1,4-dioxides was synthesized and evaluated against breast cancer cell lines in normoxia and hypoxia. Selected compounds in this series demonstrated better cytotoxicity and comparable hypoxia selectivity than tirapazamine. In contrast to Dox, quinoxaline-1,4-dioxides showed potent cytotoxicity against different MDR cells. Compound 2g inhibits of cancer cell growth through p53-independent mechanisms. Our results showed that compound 2g sensitized MCF-7 cells to metformin in hypoxia. Treatment with 2g results in the increase of ROS accumulation in cancer cells. Compound 2g can be considered as the lead compound for further anticancer drug design, evaluation, and development of new potent antitumor agents.


Asunto(s)
Regulación hacia Abajo , Resistencia a Antineoplásicos/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Nitrilos/síntesis química , Quinoxalinas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Células K562 , Células MCF-7 , Metformina/farmacología , Estructura Molecular , Nitrilos/química , Nitrilos/farmacología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA