Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Open Life Sci ; 18(1): 20220665, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37589001

RESUMEN

In accordance with the inability of various hair artefacts subjected to dermoscopic medical images, undergoing illumination challenges that include chest-Xray featuring conditions of imaging acquisi-tion situations built with clinical segmentation. The study proposed a novel deep-convolutional neural network (CNN)-integrated methodology for applying medical image segmentation upon chest-Xray and dermoscopic clinical images. The study develops a novel technique of segmenting medical images merged with CNNs with an architectural comparison that incorporates neural networks of U-net and fully convolutional networks (FCN) schemas with loss functions associated with Jaccard distance and Binary-cross entropy under optimised stochastic gradient descent + Nesterov practices. Digital image over clinical approach significantly built the diagnosis and determination of the best treatment for a patient's condition. Even though medical digital images are subjected to varied components clarified with the effect of noise, quality, disturbance, and precision depending on the enhanced version of images segmented with the optimised process. Ultimately, the threshold technique has been employed for the output reached under the pre- and post-processing stages to contrast the image technically being developed. The data source applied is well-known in PH2 Database for Melanoma lesion segmentation and chest X-ray images since it has variations in hair artefacts and illumination. Experiment outcomes outperform other U-net and FCN architectures of CNNs. The predictions produced from the model on test images were post-processed using the threshold technique to remove the blurry boundaries around the predicted lesions. Experimental results proved that the present model has better efficiency than the existing one, such as U-net and FCN, based on the image segmented in terms of sensitivity = 0.9913, accuracy = 0.9883, and dice coefficient = 0.0246.

2.
Comput Intell Neurosci ; 2022: 8803586, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36210975

RESUMEN

The Internet of Things (IoT) ushers in a new era of communication that depends on a broad range of things and many types of communication technologies to share information. This new age of communication will be characterised by the following characteristics: Because all of the IoT's objects are connected to one another and because they function in environments that are not protected, it poses a significantly greater number of issues, constraints, and challenges than do traditional computing systems. This is due to the fact that traditional computing systems do not have as many interconnected components. Because of this, it is imperative that security be prioritised in a new approach, which is not something that is currently present in conventional computer systems. The Wireless Sensor Network, often known as WSN, and the Mobile Ad hoc Network are two technologies that play significant roles in the process of building an Internet of Things system. These technologies are used in a wide variety of activities, including sensing, environmental monitoring, data collecting, heterogeneous communication techniques, and data processing, amongst others. Because it incorporates characteristics of both MANET and WSN, IoT is susceptible to the same kinds of security issues that affect those other networks. An assault known as a Delegate Entity Attack (DEA) is a subclass of an attack known as a Denial of Service (DoS). The attacker sends an unacceptable number of control packets that have the appearance of being authentic. DoS assaults may take many different forms, and one of those kinds is an SD attack. Because of this, it is far more difficult to recognise this form of attack than a simple one that depletes the battery's capacity. One of the other key challenges that arise in a network during an SD attack is that there is the need to enhance energy management and prolong the lifespan of IoT nodes. This is one of the other significant issues that arise in a network when an SD attack is occurs. It is recommended that you make use of a Random Number Generator with Hierarchical Intrusion Detection System, abbreviated as RNGHID for short. The ecosystem of the Internet of Things is likely to be segmented into a great number of separate sectors and clusters. The HIPS system has been partitioned into two entities, which are referred to as the Delegate Entity (DE) and the Pivotal Entity, in order to identify any nodes in the network that are behaving in an abnormal manner. These entities are known, respectively, as the Delegate Entity and the Pivotal Entity (PE). Once the anomalies have been identified, it will be possible to pinpoint the area of the SD attack torture and the damaging activities that have been taken place. A warning message, generated by the Malicious Node Alert System (MNAS), is broadcast across the network in order to inform the other nodes that the network is under attack. This message classifies the various sorts of attacks based on the results of an algorithm that employs machine learning. The proposed protocol displays various desired properties, such as the capacity to conduct indivisible authentication, rapid authentication, and minimum overhead in both transmission and storage. These are only a few of the desirable attributes.


Asunto(s)
Internet de las Cosas , Redes de Comunicación de Computadores , Seguridad Computacional , Ecosistema , Aprendizaje Automático
3.
Comput Intell Neurosci ; 2022: 4003403, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105640

RESUMEN

The Internet of Things, sometimes known as IoT, is a relatively new kind of Internet connectivity that connects physical objects to the Internet in a way that was not possible in the past. The Internet of Things is another name for this concept (IoT). The Internet of Things has a larger attack surface as a result of its hyperconnectivity and heterogeneity, both of which are characteristics of the IoT. In addition, since the Internet of Things devices are deployed in managed and uncontrolled contexts, it is conceivable for malicious actors to build new attacks that target these devices. As a result, the Internet of Things (IoT) requires self-protection security systems that are able to autonomously interpret attacks in IoT traffic and efficiently handle the attack scenario by triggering appropriate reactions at a pace that is faster than what is currently available. In order to fulfill this requirement, fog computing must be utilised. This type of computing has the capability of integrating an intelligent self-protection mechanism into the distributed fog nodes. This allows the IoT application to be protected with the least amount of human intervention while also allowing for faster management of attack scenarios. Implementing a self-protection mechanism at malicious fog nodes is the primary objective of this research work. This mechanism should be able to detect and predict known attacks based on predefined attack patterns, as well as predict novel attacks based on no predefined attack patterns, and then choose the most appropriate response to neutralise the identified attack. In the environment of the IoT, a distributed Gaussian process regression is used at fog nodes to anticipate attack patterns that have not been established in the past. This allows for the prediction of new cyberattacks in the environment. It predicts attacks in an uncertain IoT setting at a speedier rate and with greater precision than prior techniques. It is able to effectively anticipate both low-rate and high-rate assaults in a more timely manner within the dispersed fog nodes, which enables it to mount a more accurate defence. In conclusion, a fog computing-based self-protection system is developed to choose the most appropriate reaction using fuzzy logic for detected or anticipated assaults using the suggested detection and prediction mechanisms. This is accomplished by utilising a self-protection system that is based on the development of a self-protection system that utilises the suggested detection and prediction mechanisms. The findings of the experimental investigation indicate that the proposed system identifies threats, lowers bandwidth usage, and thwarts assaults at a rate that is twenty-five percent faster than the cloud-based system implementation.


Asunto(s)
Nube Computacional , Aprendizaje Automático , Lógica Difusa , Humanos
4.
Biomed Res Int ; 2022: 6451770, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958823

RESUMEN

Most of the people all over the world pass away from complications related to lung cancer every single day. It is a deadly form of the disease. To improve a person's chances of survival, an early diagnosis is a necessary prerequisite. In this regard, the existing methods of tumour detection, such as CT scans, are most commonly used to recognize infected regions. Despite this, there are certain obstacles presented by CT imaging, so this paper proposes a novel model which is a correlation-based model designed for analysis of lung cancer. When registering pictures of thoracic and abdominal organs with slider motion, the total variation regularization term may correct the border discontinuous displacement field, but it cannot maintain the local characteristics of the image and loses the registration accuracy. The thin-plate spline energy operator and the total variation operator are spatially weighted via the spatial position weight of the pixel points to construct an adaptive thin-plate spline total variation regular term for lung image CT single-mode registration and CT/PET dual-mode registration. The regular term is then combined with the CRMI similarity measure and the L-BFGS optimization approach to create a nonrigid registration procedure. The proposed method assures the smoothness of interior of the picture while ensuring the discontinuous motion of the border and has greater registration accuracy, according to the experimental findings on the DIR-Lab 4D-CT public dataset and the CT/PET clinical dataset.


Asunto(s)
Tomografía Computarizada Cuatridimensional , Neoplasias Pulmonares , Algoritmos , Humanos , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Movimiento (Física) , Tórax
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...