Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 5364, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686195

RESUMEN

Elemental type-II superconducting niobium is the material of choice for superconducting radiofrequency cavities used in modern particle accelerators, light sources, detectors, sensors, and quantum computing architecture. An essential challenge to increasing energy efficiency in rf applications is the power dissipation due to residual magnetic field that is trapped during the cool down process due to incomplete magnetic field expulsion. New SRF cavity processing recipes that use surface doping techniques have significantly increased their cryogenic efficiency. However, the performance of SRF Nb accelerators still shows vulnerability to a trapped magnetic field. In this manuscript, we report the observation of a direct link between flux trapping and incomplete flux expulsion with spatial variations in microstructure within the niobium. Fine-grain recrystallized microstructure with an average grain size of 10-50 µm leads to flux trapping even with a lack of dislocation structures in grain interiors. Larger grain sizes beyond 100-400 µm do not lead to preferential flux trapping, as observed directly by magneto-optical imaging. While local magnetic flux variations imaged by magneto-optics provide clarity on a microstructure level, bulk variations are also indicated by variations in pinning force curves with sequential heat treatment studies. The key results indicate that complete control of the niobium microstructure will help produce higher performance superconducting resonators with reduced rf losses1 related to the magnetic flux trapping.

2.
Rev Sci Instrum ; 83(6): 065105, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22755660

RESUMEN

Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

3.
ACS Nano ; 6(4): 3171-8, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22393880

RESUMEN

We report on the design, fabrication, and performance of a nanoporous, coaxial array capacitive detector for highly sensitive chemical detection. Composed of an array of vertically aligned nanoscale coaxial electrodes constructed with porous dielectric coax annuli around carbon nanotube cores, this sensor is shown to achieve parts per billion level detection sensitivity, at room temperature, to a broad class of organic molecules. The nanoscale, 3D architecture and microscale array pitch of the sensor enable rapid access of target molecules and chip-based multiplexing capabilities, respectively.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Nanotecnología/instrumentación , Capacidad Eléctrica , Electrodos , Etanol/análisis , Temperatura , Factores de Tiempo , Compuestos Orgánicos Volátiles/análisis
4.
Phys Rev Lett ; 105(6): 067201, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20868001

RESUMEN

Measurements and calculations of magnetotransport in the organic conductor (DMET)(2)I(3) detect and simulate all angular magnetoresistance oscillations known for quasi-one-dimensional conductors. By employing the actual triclinic crystal structure in the calculations, these results address the putative vanishing of the primary magnetoresistance phenomenon, the Lebed magic angle effect, for orientations in which it was expected to be strongest. They also show a common origin for Lebed and the so-called Lee-Naughton oscillations and confirm the generalized nature of angular effects in such systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...