Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(17): 3175-3191.e8, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39096900

RESUMEN

Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects. The requirement for HDAC in heterochromatin silencing can be bypassed by impeding SWI/SNF activity. Highlighting the crucial role of remodelers, merely targeting SWI/SNF to heterochromatin, even in cells with functional HDAC, increases nucleosome turnover, causing defective gene silencing and compromised epigenetic inheritance. This study elucidates a fundamental mechanism whereby histone hypoacetylation, maintained by high HDAC levels in heterochromatic regions, ensures stable gene silencing and epigenetic inheritance, providing insights into genome regulatory mechanisms relevant to human diseases.


Asunto(s)
Ensamble y Desensamble de Cromatina , Epigénesis Genética , Silenciador del Gen , Heterocromatina , Histona Desacetilasas , Histonas , Nucleosomas , Heterocromatina/metabolismo , Heterocromatina/genética , Nucleosomas/metabolismo , Nucleosomas/genética , Histonas/metabolismo , Histonas/genética , Acetilación , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Humanos , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Animales
2.
Proc Natl Acad Sci U S A ; 121(6): e2315596121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285941

RESUMEN

Heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), spreads across large domains and can be epigenetically inherited in a self-propagating manner. Heterochromatin propagation depends upon a read-write mechanism, where the Clr4/Suv39h methyltransferase binds to preexisting trimethylated H3K9 (H3K9me3) and further deposits H3K9me. How the parental methylated histone template is preserved during DNA replication is not well understood. Here, we demonstrate using Schizosaccharomyces pombe that heterochromatic regions are specialized replication domains demarcated by their surrounding boundary elements. DNA replication throughout these domains is distinguished by an abundance of replisome components and is coordinated by Swi6/HP1. Although mutations in the replicative helicase subunit Mcm2 that affect histone binding impede the maintenance of a heterochromatin domain at an artificially targeted ectopic site, they have only a modest impact on heterochromatin propagation via the read-write mechanism at an endogenous site. Instead, our findings suggest a crucial role for the replication factor Mcl1 in retaining parental histones and promoting heterochromatin propagation via a mechanism involving the histone chaperone FACT. Engagement of FACT with heterochromatin requires boundary elements, which position the heterochromatic domain at the nuclear peripheral subdomain enriched for heterochromatin factors. Our findings highlight the importance of replisome components and boundary elements in creating a specialized environment for the retention of parental methylated histones, which facilitates epigenetic inheritance of heterochromatin.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Histonas/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Ensamble y Desensamble de Cromatina , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Epigénesis Genética
3.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34035174

RESUMEN

Heterochromatin assembly requires methylation of histone H3 lysine 9 (H3K9me) and serves as a paradigm for understanding the importance of histone modifications in epigenetic genome control. Heterochromatin is nucleated at specific genomic sites and spreads across extended chromosomal domains to promote gene silencing. Moreover, heterochromatic structures can be epigenetically inherited in a self-templating manner, which is critical for stable gene repression. The spreading and inheritance of heterochromatin are believed to be dependent on preexisting H3K9 tri-methylation (H3K9me3), which is recognized by the histone methyltransferase Clr4/Suv39h via its chromodomain, to promote further deposition of H3K9me. However, the process involving the coupling of the "read" and "write" capabilities of histone methyltransferases is poorly understood. From an unbiased genetic screen, we characterize a dominant-negative mutation in histone H3 (H3G13D) that impairs the propagation of endogenous and ectopic heterochromatin domains in the fission yeast genome. H3G13D blocks methylation of H3K9 by the Clr4/Suv39h methyltransferase and acts in a dosage-dependent manner to interfere with the spreading and maintenance of heterochromatin. Our analyses show that the incorporation of unmethylatable histone H3G13D into chromatin decreases H3K9me3 density and thereby compromises the read-write capability of Clr4/Suv39h. Consistently, enhancing the affinity of Clr4/Suv39h for methylated H3K9 is sufficient to overcome the defects in heterochromatin assembly caused by H3G13D Our work directly implicates methylated histones in the transmission of epigenetic memory and shows that a critical density threshold of H3K9me3 is required to promote epigenetic inheritance of heterochromatin through the read-write mechanism.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Epigénesis Genética , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Metilación , Schizosaccharomyces , Complejo Shelterina/metabolismo
4.
Nat Cell Biol ; 23(3): 243-256, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33574613

RESUMEN

Cell proliferation and differentiation require signalling pathways that enforce appropriate and timely gene expression. We find that Tor2, the catalytic subunit of the TORC1 complex in fission yeast, targets a conserved nuclear RNA elimination network, particularly the serine and proline-rich protein Pir1, to control gene expression through RNA decay and facultative heterochromatin assembly. Phosphorylation by Tor2 protects Pir1 from degradation by the ubiquitin-proteasome system involving the polyubiquitin Ubi4 stress-response protein and the Cul4-Ddb1 E3 ligase. This pathway suppresses widespread and untimely gene expression and is critical for sustaining cell proliferation. Moreover, we find that the dynamic nature of Tor2-mediated control of RNA elimination machinery defines gene expression patterns that coordinate fundamental chromosomal events during gametogenesis, such as meiotic double-strand-break formation and chromosome segregation. These findings have important implications for understanding how the TOR signalling pathway reprogrammes gene expression patterns and contributes to diseases such as cancer.


Asunto(s)
Proliferación Celular , Ensamble y Desensamble de Cromatina , Regulación Fúngica de la Expresión Génica , Heterocromatina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Heterocromatina/genética , Mitosis , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Ubiquitinación
5.
Nat Commun ; 11(1): 2412, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415063

RESUMEN

Long non-coding RNAs (lncRNAs) are components of epigenetic control mechanisms that ensure appropriate and timely gene expression. The functions of lncRNAs are often mediated through associated gene regulatory activities, but how lncRNAs are distinguished from other RNAs and recruit effector complexes is unclear. Here, we utilize the fission yeast Schizosaccharomyces pombe to investigate how lncRNAs engage silencing activities to regulate gene expression in cis. We find that invasion of lncRNA transcription into the downstream gene body incorporates a cryptic intron required for repression of that gene. Our analyses show that lncRNAs containing cryptic introns are targeted by the conserved Pir2ARS2 protein in association with splicing factors, which recruit RNA processing and chromatin-modifying activities involved in gene silencing. Pir2 and splicing machinery are broadly required for gene repression. Our finding that human ARS2 also interacts with splicing factors suggests a conserved mechanism mediates gene repression through cryptic introns within lncRNAs.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Intrones , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Empalme Alternativo , Cromatina/metabolismo , Cruzamientos Genéticos , Silenciador del Gen , Genoma Fúngico , Proteínas de Choque Térmico/genética , Proteínas Nucleares/genética , Interferencia de ARN , Sitios de Empalme de ARN , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , RNA-Seq , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transcripción Genética
6.
Cell ; 180(1): 150-164.e15, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31883795

RESUMEN

In eukaryotes, heterochromatin is generally located at the nuclear periphery. This study investigates the biological significance of perinuclear positioning for heterochromatin maintenance and gene silencing. We identify the nuclear rim protein Amo1NUPL2 as a factor required for the propagation of heterochromatin at endogenous and ectopic sites in the fission yeast genome. Amo1 associates with the Rix1PELP1-containing RNA processing complex RIXC and with the histone chaperone complex FACT. RIXC, which binds to heterochromatin protein Swi6HP1 across silenced chromosomal domains and to surrounding boundary elements, connects heterochromatin with Amo1 at the nuclear periphery. In turn, the Amo1-enriched subdomain is critical for Swi6 association with FACT that precludes histone turnover to promote gene silencing and preserve epigenetic stability of heterochromatin. In addition to uncovering conserved factors required for perinuclear positioning of heterochromatin, these analyses elucidate a mechanism by which a peripheral subdomain enforces stable gene repression and maintains heterochromatin in a heritable manner.


Asunto(s)
Epigénesis Genética/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Represión Epigenética/genética , Silenciador del Gen , Herencia , Histonas/genética , Histonas/metabolismo , Metilación , Proteínas Nucleares/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
Cell Rep ; 28(1): 267-281.e5, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269446

RESUMEN

In eukaryotic genomes, heterochromatin is targeted by RNAi machinery and/or by pathways requiring RNA elimination and transcription termination factors. However, a direct connection between termination machinery and RNA polymerase II (RNAPII) transcriptional activity at heterochromatic loci has remained elusive. Here, we show that, in fission yeast, the conserved cleavage and polyadenylation factor (CPF) is a key component involved in RNAi-independent assembly of constitutive and facultative heterochromatin domains and that CPF is broadly required to silence genes regulated by Clr4SUV39H. Remarkably, CPF is recruited to non-canonical termination sites within the body of genes by the YTH family RNA-binding protein Mmi1 and is required for RNAPII transcription termination and facultative heterochromatin assembly. CPF loading by Mmi1 also promotes the selective termination of long non-coding RNAs that regulate gene expression in cis. These analyses delineate a mechanism in which CPF loaded onto non-canonical termination sites specifies targets of heterochromatin assembly and gene silencing.


Asunto(s)
Silenciador del Gen , Heterocromatina/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Terminación de la Transcripción Genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina/genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Meiosis/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Interferencia de ARN , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Escisión y Poliadenilación de ARNm/genética
8.
Nat Struct Mol Biol ; 25(5): 372-383, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29686279

RESUMEN

Iron metabolism is critical for sustaining life and maintaining human health. Here, we find that iron homeostasis is linked to facultative heterochromatin assembly and regulation of gene expression during adaptive genome control. We show that the fission yeast Clr4/Suv39h histone methyltransferase is part of a rheostat-like mechanism in which transcriptional upregulation of mRNAs in response to environmental change provides feedback to prevent their uncontrolled expression through heterochromatin assembly. Interestingly, proper iron homeostasis is required, as iron depletion or downregulation of iron transporters causes defects in heterochromatin assembly and unrestrained upregulation of gene expression. Remarkably, an unbiased genetic screen revealed that restoration of iron homeostasis is sufficient to re-establish facultative heterochromatin and proper gene control genome-wide. These results establish a role for iron homeostasis in facultative heterochromatin assembly and reveal a dynamic mechanism for reprogramming the genome in response to environmental changes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Heterocromatina/metabolismo , Metiltransferasas/metabolismo , ARN de Hongos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas Portadoras/metabolismo , Ensamble y Desensamble de Cromatina/genética , Frío , N-Metiltransferasa de Histona-Lisina , Hierro/metabolismo , ARN de Hongos/genética , Schizosaccharomyces/genética , Transcripción Genética/genética
9.
Nature ; 543(7643): 126-130, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28199302

RESUMEN

Uniparental disomy (UPD), in which an individual contains a pair of homologous chromosomes originating from only one parent, is a frequent phenomenon that is linked to congenital disorders and various cancers. UPD is thought to result mostly from pre- or post-zygotic chromosome missegregation. However, the factors that drive UPD remain unknown. Here we use the fission yeast Schizosaccharomyces pombe as a model to investigate UPD, and show that defects in the RNA interference (RNAi) machinery or in the YTH domain-containing RNA elimination factor Mmi1 cause high levels of UPD in vegetative diploid cells. This phenomenon is not due to defects in heterochromatin assembly at centromeres. Notably, in cells lacking RNAi components or Mmi1, UPD is associated with the untimely expression of gametogenic genes. Deletion of the upregulated gene encoding the meiotic cohesin Rec8 or the cyclin Crs1 suppresses UPD in both RNAi and mmi1 mutants. Moreover, overexpression of Rec8 is sufficient to trigger UPD in wild-type cells. Rec8 expressed in vegetative cells localizes to chromosomal arms and to the centromere core, where it is required for localization of the cohesin subunit Psc3. The centromeric localization of Rec8 and Psc3 promotes UPD by uniquely affecting chromosome segregation, causing a reductional segregation of one homologue. Together, these findings establish the untimely vegetative expression of gametogenic genes as a causative factor of UPD, and provide a solid foundation for understanding this phenomenon, which is linked to diverse human diseases.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Células Germinativas/metabolismo , Modelos Biológicos , Mutación , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Disomía Uniparental/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Ciclinas/deficiencia , Ciclinas/genética , Diploidia , Heterocromatina/metabolismo , Humanos , Meiosis/genética , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferencia de ARN , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Tiempo , Disomía Uniparental/patología , Factores de Escisión y Poliadenilación de ARNm/deficiencia , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
10.
Mol Cell ; 62(6): 862-874, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27264871

RESUMEN

Facultative heterochromatin regulates gene expression, but its assembly is poorly understood. Previously, we identified facultative heterochromatin islands in the fission yeast genome and found that RNA elimination machinery promotes island assembly at meiotic genes. Here, we report that Taz1, a component of the telomere protection complex Shelterin, is required to assemble heterochromatin islands at regions corresponding to late replication origins that are sites of double-strand break formation during meiosis. The loss of Taz1 or other Shelterin subunits, including Ccq1 that interacts with Clr4/Suv39h, abolishes heterochromatin at late origins and causes derepression of associated genes. Moreover, the late-origin regulator Rif1 affects heterochromatin at Taz1-dependent islands and subtelomeric regions. We explore the connection between facultative heterochromatin and replication control and show that heterochromatin machinery affects replication timing. These analyses reveal the role of Shelterin in facultative heterochromatin assembly at late origins, which has important implications for genome stability and gene regulation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromosomas Fúngicos , ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica , Heterocromatina/metabolismo , Origen de Réplica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Metilación de ADN , ADN de Hongos/genética , Silenciador del Gen , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Unión Proteica , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Unión a Telómeros/genética , Factores de Tiempo
11.
Mol Cell ; 61(5): 747-759, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26942678

RESUMEN

Erh1, the fission yeast homolog of Enhancer of rudimentary, is implicated in meiotic mRNA elimination during vegetative growth, but its function is poorly understood. We show that Erh1 and the RNA-binding protein Mmi1 form a stoichiometric complex, called the Erh1-Mmi1 complex (EMC), to promote meiotic mRNA decay and facultative heterochromatin assembly. To perform these functions, EMC associates with two distinct complexes, Mtl1-Red1 core (MTREC) and CCR4-NOT. Whereas MTREC facilitates assembly of heterochromatin islands coating meiotic genes silenced by the nuclear exosome, CCR4-NOT promotes RNAi-dependent heterochromatin domain (HOOD) formation at EMC-target loci. CCR4-NOT also assembles HOODs at retrotransposons and regulated genes containing cryptic introns. We find that CCR4-NOT facilitates HOOD assembly through its association with the conserved Pir2/ARS2 protein, and also maintains rDNA integrity and silencing by promoting heterochromatin formation. Our results reveal connections among Erh1, CCR4-NOT, Pir2/ARS2, and RNAi, which target heterochromatin to regulate gene expression and protect genome integrity.


Asunto(s)
Proteínas Portadoras/metabolismo , Ensamble y Desensamble de Cromatina , Heterocromatina/metabolismo , Meiosis , Interferencia de ARN , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Proteínas Portadoras/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Regulación Fúngica de la Expresión Génica , Heterocromatina/genética , Mutación , Conformación de Ácido Nucleico , Unión Proteica , ARN de Hongos/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Retroelementos , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética
12.
Proc Natl Acad Sci U S A ; 112(51): 15548-55, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26631744

RESUMEN

Cotranscriptional RNA processing and surveillance factors mediate heterochromatin formation in diverse eukaryotes. In fission yeast, RNAi machinery and RNA elimination factors including the Mtl1-Red1 core and the exosome are involved in facultative heterochromatin assembly; however, the exact mechanisms remain unclear. Here we show that RNA elimination factors cooperate with the conserved exoribonuclease Dhp1/Rat1/Xrn2, which couples pre-mRNA 3'-end processing to transcription termination, to promote premature termination and facultative heterochromatin formation at meiotic genes. We also find that Dhp1 is critical for RNAi-mediated heterochromatin assembly at retroelements and regulated gene loci and facilitates the formation of constitutive heterochromatin at centromeric and mating-type loci. Remarkably, our results reveal that Dhp1 interacts with the Clr4/Suv39h methyltransferase complex and acts directly to nucleate heterochromatin. Our work uncovers a previously unidentified role for 3'-end processing and transcription termination machinery in gene silencing through premature termination and suggests that noncanonical transcription termination by Dhp1 and RNA elimination factors is linked to heterochromatin assembly. These findings have important implications for understanding silencing mechanisms targeting genes and repeat elements in higher eukaryotes.


Asunto(s)
Exorribonucleasas/metabolismo , Silenciador del Gen , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Terminación de la Transcripción Genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Exorribonucleasas/genética , Genes Fúngicos , Heterocromatina/genética , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina , Intrones , Meiosis/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación , Procesamiento de Término de ARN 3' , ARN de Hongos/genética , ARN de Hongos/metabolismo , Retroelementos , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética
13.
Cell ; 155(5): 1061-74, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24210919

RESUMEN

The regulation of protein-coding and noncoding RNAs is linked to nuclear processes, including chromatin modifications and gene silencing. However, the mechanisms that distinguish RNAs and mediate their functions are poorly understood. We describe a nuclear RNA-processing network in fission yeast with a core module comprising the Mtr4-like protein, Mtl1, and the zinc-finger protein, Red1. The Mtl1-Red1 core promotes degradation of mRNAs and noncoding RNAs and associates with different proteins to assemble heterochromatin via distinct mechanisms. Mtl1 also forms Red1-independent interactions with evolutionarily conserved proteins named Nrl1 and Ctr1, which associate with splicing factors. Whereas Nrl1 targets transcripts with cryptic introns to form heterochromatin at developmental genes and retrotransposons, Ctr1 functions in processing intron-containing telomerase RNA. Together with our discovery of widespread cryptic introns, including in noncoding RNAs, these findings reveal unique cellular strategies for recognizing regulatory RNAs and coordinating their functions in response to developmental and environmental cues.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Telómero/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Ensamble y Desensamble de Cromatina , Heterocromatina/metabolismo , Intrones
14.
Science ; 331(6024): 1624-7, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21436456

RESUMEN

Pervasive transcription of eukaryotic genomes generates a plethora of noncoding RNAs. In fission yeast, the heterochromatin factor Clr4/Suv39 methyltransferase facilitates RNA interference (RNAi)-mediated processing of centromeric transcripts into small interfering RNAs (siRNAs). Clr4 also mediates degradation of antisense RNAs at euchromatic loci, but the underlying mechanism has remained elusive. We show that Clr4 and the RNAi effector RITS (RNA-induced transcriptional silencing) interact with Mlo3, a protein related to mRNA quality control and export factors. Loss of Clr4 impairs RITS interaction with Mlo3, which is required for centromeric siRNA production and antisense suppression. Mlo3 also interacts with the RNA surveillance factor TRAMP, which suppresses antisense RNAs targeted by Clr4 and RNAi. These findings link Clr4 to RNA quality control machinery and suggest a pathway for processing potentially deleterious RNAs through the coordinated actions of RNAi and other RNA processing activities.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Metiltransferasas/metabolismo , Interferencia de ARN , ARN sin Sentido/metabolismo , ARN de Hongos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Centrómero/metabolismo , Eucromatina/metabolismo , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Metilación , Metiltransferasas/genética , Mutación , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
15.
J Biol Chem ; 285(19): 14122-33, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20231270

RESUMEN

Schizosaccharomyces pombe Dss1p and its homologs function in multiple cellular processes including recombinational repair of DNA and nuclear export of messenger RNA. We found that Tap-tagged Rad24p, a member of the 14-3-3 class of proteins, co-purified Dss1p along with mitotic activator Cdc25p, messenger RNA export/cell cycle factor Rae1p, 19 S proteasomal factors, and recombination protein Rhp51p (a Rad51p homolog). Using chromatin immunoprecipitation, we found that Dss1p recruited Rad24p and Rae1p to the double-strand break (DSB) sites. Furthermore, Cdc25p also recruited to the DSB site, and its recruitment was dependent on Dss1p, Rad24p, and the protein kinase Chk1p. Following DSB, all nuclear Cdc25p was found to be chromatin-associated. We found that Dss1p and Rae1p have a DNA damage checkpoint function, and upon treatment with UV light Deltadss1 cells entered mitosis prematurely with indistinguishable timing from Deltarad24 cells. Taken together, these results suggest that Dss1p plays a critical role in linking repair and checkpoint factors to damaged DNA sites by specifically recruiting Rad24p and Cdc25p to the DSBs. We suggest that the sequestration of Cdc25p to DNA damage sites could provide a mechanism for S. pombe cells to arrest at G(2)/M boundary in response to DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , ras-GRF1/metabolismo , Western Blotting , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Cromatina/genética , Inmunoprecipitación de Cromatina , Daño del ADN , Reparación del ADN , Genes cdc , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/genética , Rayos Ultravioleta
16.
Proc Natl Acad Sci U S A ; 106(22): 8998-9003, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19443688

RESUMEN

Conserved chromosomal HP1 proteins capable of binding to histone H3 methylated at lysine 9 are believed to provide a dynamic platform for the recruitment and/or spreading of various regulatory proteins involved in diverse chromosomal processes. The fission yeast Schizosaccharomyces pombe HP1 family members Chp2 and Swi6 are important for heterochromatin assembly and transcriptional silencing, but their precise roles are not fully understood. Here, we show that Swi6 and Chp2 associate with histone deacetylase (HDAC) protein complexes containing class I HDAC Clr6 and class II HDAC Clr3 (a component of Snf2/HDAC repressor complex), which are critical for transcriptional silencing of centromeric repeats targeted by the heterochromatin machinery. Mapping of RNA polymerase (Pol) II distribution in single and double mutant backgrounds revealed that Swi6 and Chp2 proteins and their associated HDAC complexes have overlapping functions in limiting Pol II occupancy across pericentromeric heterochromatin domains. The purified Swi6 fraction also contains factors involved in various chromosomal processes such as chromatin remodeling and DNA replication. Also, Swi6 copurifies with Mis4 protein, a cohesin loading factor essential for sister chromatid cohesion, and with centromere-specific histone H3 variant CENP-A, which is incorporated into chromatin in a heterochromatin-dependent manner. These analyses suggest that among other functions, HP1 proteins associate with chromatin-modifying factors that in turn cooperate to assemble repressive chromatin; thus, precluding accessibility of underlying DNA sequences to transcriptional machinery.


Asunto(s)
Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Silenciador del Gen , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/genética , Inmunoprecipitación de Cromatina , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , ADN Polimerasa II/metabolismo , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA