Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36343612

RESUMEN

Primaquine (PQ), a prototype 8-aminoquinoline (8-AQ) drug used to treat malaria, is rapidly metabolized into different inactive and active metabolites. Due to the hemolytic toxicity, the uses of PQ have been confined. To understand its overall metabolism and its relation to drug efficacy and toxicity, profiling of urine for the parent drug and its metabolites is important. The current study presents a convenient and rapid method for simultaneously quantifying primaquine (PQ) and its metabolites in human urine. A simple liquid-liquid extraction followed by chromatographic separation and quantification through ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and validated to quantify PQ and its eleven metabolites in the urine of healthy human volunteers who received a single oral dose of PQ. The developed method separated fourteen analytes, including internal standards, within nine minutes of run time. The linearity of all analytes was suitable in the range of 1-500 ng/mL. The extraction recovery for all concentrations of analytes from urine was ranged from 90.1 to 112.9 %. The relative standard deviation for intra- and inter-day precision were < 9.8 and < 10.7 %, respectively. Along with PQ, its different metabolites were detected in urine. Primaquine-5,6-orthoquinone, the N-carbamoylglucuronide conjugate of PQ and carboxyprimaquine were the major metabolites found in urine. Significant enantiomeric differences in the urinary excretion profiles for PQ and metabolites were observed. This analytical method can be implemented in the pharmacokinetic analysis of PQ to explain its toxicity and clinical decision making.


Asunto(s)
Primaquina , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Estereoisomerismo
2.
Malar J ; 21(1): 33, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123453

RESUMEN

BACKGROUND: Primaquine (PQ) has been used for the radical cure of relapsing Plasmodium vivax malaria for more than 60 years. PQ is also recommended for prophylaxis and prevention of transmission of Plasmodium falciparum. However, clinical utility of PQ has been limited due to toxicity in individuals with genetic deficiencies in glucose 6-phosphate dehydrogenase (G6PD). PQ is currently approved for clinical use as a racemic mixture. Recent studies in animals as well as humans have established differential pharmacological and toxicological properties of the two enantiomers of PQ. This has been attributed to differential metabolism and pharmacokinetics of individual PQ enantiomers. The aim of the current study is to evaluate the comparative pharmacokinetics (PK), tissue distribution and metabolic profiles of the individual enantiomers in mice. METHODS: Two groups of 21 male Albino ND4 Swiss mice were dosed orally with 45 mg/kg of S-(+)-PQ and R-(-)PQ respectively. Each of the enantiomers was comprised of a 50:50 mixture of 12C- and 13C- stable isotope labelled species (at 6 carbons on the benzene ring of the quinoline core). Three mice were euthanized from each group at different time points (at 0, 0.5, 1, 2, 4, 8, 24 h) and blood was collected by terminal cardiac bleed. Liver, spleen, lungs, kidneys and brain were removed, extracted and analysed using UPLC/MS. The metabolites were profiled by tandem mass (MS/MS) fragmentation profile and fragments with 12C-13C twin peaks. Non-compartmental analysis was performed using the Phoenix WinNonLin PK software module. RESULTS: The plasma AUC0-last (µg h/mL) (1.6 vs. 0.6), T1/2 (h) (1.9 vs. 0.45), and Tmax (h) (1 vs. 0.5) were greater for SPQ as compared to RPQ. Generally, the concentration of SPQ was higher in all tissues. At Tmax, (0.5-1 h in all tissues), the level of SPQ was 3 times that of RPQ in the liver. Measured Cmax of SPQ and RPQ in the liver were about 100 and 40 times the Cmax values in plasma, respectively. Similar observations were recorded in other tissues where the concentration of SPQ was higher compared to RPQ (2× in the spleen, 6× in the kidneys, and 49× in the lungs) than in the plasma. CPQ, the major metabolite, was preferentially generated from RPQ, with higher levels in all tissues (> 10× in the liver, and 3.5× in the plasma) than from SPQ. The PQ-o-quinone was preferentially formed from the SPQ (> 4× compared to RPQ), with higher concentrations in the liver. CONCLUSION: These studies show that in mice, PQ enantiomers are differentially biodistributed and metabolized, which may contribute to differential pharmacologic and toxicity profiles of PQ enantiomers. The findings on higher levels of PQ-o-quinone in liver and RBCs compared to plasma and preferential generation of this metabolite from SPQ are consistent with the higher anti-malarial efficacy of SPQ observed in the mouse causal prophylaxis test, and higher haemolytic toxicity in the humanized mouse model of G6PD deficiency. Potential relevance of these findings to clinical use of racemic PQ and other 8-aminoquinolines vis-à-vis need for further clinical evaluation of individual enantiomers are discussed.


Asunto(s)
Antimaláricos , Deficiencia de Glucosafosfato Deshidrogenasa , Animales , Masculino , Ratones , Primaquina , Espectrometría de Masas en Tándem , Distribución Tisular
4.
Malar J ; 17(1): 294, 2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-30103751

RESUMEN

BACKGROUND: Primaquine (PQ), an 8-aminoquinoline, is the only drug approved by the United States Food and Drug Administration for radical cure and prevention of relapse in Plasmodium vivax infections. Knowledge of the metabolism of PQ is critical for understanding the therapeutic efficacy and hemolytic toxicity of this drug. Recent in vitro studies with primary human hepatocytes have been useful for developing the ultra high-performance liquid chromatography coupled with high-resolution mass spectrometric (UHPLC-QToF-MS) methods for simultaneous determination of PQ and its metabolites generated through phase I and phase II pathways for drug metabolism. METHODS: These methods were further optimized and applied for phenotyping PQ metabolites from plasma and urine from healthy human volunteers treated with single 45 mg dose of PQ. Identity of the metabolites was predicted by MetaboLynx using LC-MS/MS fragmentation patterns. Selected metabolites were confirmed with appropriate standards. RESULTS: Besides PQ and carboxy PQ (cPQ), the major plasma metabolite, thirty-four additional metabolites were identified in human plasma and urine. Based on these metabolites, PQ is viewed as metabolized in humans via three pathways. Pathway 1 involves direct glucuronide/glucose/carbamate/acetate conjugation of PQ. Pathway 2 involves hydroxylation (likely cytochrome P450-mediated) at different positions on the quinoline ring, with mono-, di-, or even tri-hydroxylations possible, and subsequent glucuronide conjugation of the hydroxylated metabolites. Pathway 3 involves the monoamine oxidase catalyzed oxidative deamination of PQ resulting in formation of PQ-aldehyde, PQ alcohol and cPQ, which are further metabolized through additional phase I hydroxylations and/or phase II glucuronide conjugations. CONCLUSION: This approach and these findings augment our understanding and provide comprehensive view of pathways for PQ metabolism in humans. These will advance the clinical studies of PQ metabolism in different populations for different therapeutic regimens and an understanding of the role these play in PQ efficacy and safety outcomes, and their possible relation to metabolizing enzyme polymorphisms.


Asunto(s)
Antimaláricos/metabolismo , Primaquina/metabolismo , Adulto , Antimaláricos/sangre , Antimaláricos/orina , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Primaquina/sangre , Primaquina/orina
5.
Antimicrob Agents Chemother ; 59(4): 2380-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25645856

RESUMEN

Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.


Asunto(s)
Antimaláricos/farmacocinética , Citocromo P-450 CYP2D6/metabolismo , Primaquina/farmacocinética , Animales , Área Bajo la Curva , Biotransformación , Citocromo P-450 CYP2D6/genética , Semivida , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Malar J ; 13: 2, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24386891

RESUMEN

BACKGROUND: Tafenoquine (TQ) is an 8-aminoquinoline (8AQ) that has been tested in several Phase II and Phase III clinical studies and is currently in late stage development as an anti-malarial prophylactic agent. NPC-1161B is a promising 8AQ in late preclinical development. It has recently been reported that the 8AQ drug primaquine requires metabolic activation by CYP 2D6 for efficacy in humans and in mice, highlighting the importance of pharmacogenomics in the target population when administering primaquine. A logical follow-up study was to determine whether CYP 2D activation is required for other compounds in the 8AQ structural class. METHODS: In the present study, the anti-malarial activities of NPC-1161B and TQ were assessed against luciferase expressing Plasmodium berghei in CYP 2D knock-out mice in comparison with normal C57BL/6 mice (WT) and with humanized/CYP 2D6 knock-in mice by monitoring luminescence with an in vivo imaging system. These experiments were designed to determine the direct effects of CYP 2D metabolic activation on the anti-malarial efficacy of NPC-1161B and TQ. RESULTS: NPC-1161B and TQ exhibited no anti-malarial activity in CYP 2D knock-out mice when dosed at their ED100 values (1 mg/kg and 3 mg/kg, respectively) established in WT mice. TQ anti-malarial activity was partially restored in humanized/CYP 2D6 knock-in mice when tested at two times its ED100. CONCLUSIONS: The results reported here strongly suggest that metabolism of NPC-1161B and TQ by the CYP 2D enzyme class is essential for their anti-malarial activity. Furthermore, these results may provide a possible explanation for therapeutic failures for patients who do not respond to 8AQ treatment for relapsing malaria. Because CYP 2D6 is highly polymorphic, variable expression of this enzyme in humans represents a significant pharmacogenomic liability for 8AQs which require CYP 2D metabolic activation for efficacy, particularly for large-scale prophylaxis and eradication campaigns.


Asunto(s)
Aminoquinolinas/metabolismo , Antimaláricos/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Succinatos/metabolismo , Animales , Citocromo P-450 CYP2D6/genética , Relación Dosis-Respuesta a Droga , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
J Ethnopharmacol ; 127(2): 543-50, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19808087

RESUMEN

AIM OF THE STUDY: The aerial parts of Baccharis dracunculifolia D.C., popularly known as "alecrim do campo", are used in folk medicine as anti-inflammatory. The aim of the present study was to evaluate the anti-inflammatory and antinociceptive activities of the crude hydroalcoholic extract obtained from leaves of Baccharis dracunculifolia (BdE), which have not been reported. MATERIALS AND METHODS: BdE was analyzed by HPLC and in vivo evaluated (doses ranging from 50 to 400mg/kg, p.o.) by using the acetic acid-induced abdominal constrictions, paw oedema induced by carrageenan or histamine, overt nociception models using capsaicin, glutamate or phorbol myristate acetate (PMA), formalin-induced nociception and mechanical hypernociception induced by carrageenan or complete Freund adjuvant (CFA). As positive controls it was used paracetamol in both acetic acid and formalin tests; dipyrone in capsaicin, glutamate and PMA-induced nociception; indomethacin in CFA and carrageenan-induced hypernociception models. In addition, the in vitro effects of BdE on COX-2 activity and on the activation of NF-kappaB were also evaluated. RESULTS: BdE (50-400mg/kg, p.o.) significantly diminished the abdominal constrictions induced by acetic acid, glutamate and CFA. Furthermore, BdE also inhibited the nociceptive responses in both phases of formalin-induced nociception. BdE, administered orally, also produced a long-lasting anti-hypernociceptive effect in the acute model of inflammatory pain induced by carrageenan. It was also observed the inhibition of COX-2 activity by BdE. CONCLUSION: In summary, the data reported in this work confirmed the traditional anti-inflammatory indications of Baccharis dracunculifolia leaves and provided biological evidences that Baccharis dracunculifolia, like Brazilian green propolis, possess antinociceptive and anti-inflammatory activities.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Baccharis , Modelos Animales de Enfermedad , Dolor/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antiinflamatorios no Esteroideos/farmacología , Asteraceae , Relación Dosis-Respuesta a Droga , Edema/tratamiento farmacológico , Edema/patología , Masculino , Ratones , Dolor/patología , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Hojas de la Planta , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...