Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 164: 213983, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39137704

RESUMEN

The effective management of deep skin wounds remains a significant healthcare challenge that often deteriorates with bacterial infection, oxidative stress, tissue necrosis, and excessive production of wound exudate. Current medical approaches, including traditional wound dressing materials, cannot effectively address these issues. There is a great need to engineer advanced and multifunctional wound dressings to address this multifaceted problem effectively. Herein, a rationally designed composite cryogel composed of a Copper Metal-Organic Framework (Cu-MOF), tannic acid (TA), polyvinyl alcohol (PVA), and zein protein has been developed by freeze-thaw technique. Cryogels display a remarkable swelling capacity attributed to their interconnected microporous morphology. Moreover, dynamic mechanical behaviour with the characteristics of potent antimicrobial, antioxidant, and biodegradation makes it a desirable wound dressing material. It was further confirmed that the material is highly biocompatible and can release TA and copper ions in a controlled manner. In-vivo skin irritation in a rat model demonstrated that composite cryogel did not provoke any irritation/inflammation when applied to the skin of a healthy recipient. In a deep wound model, the composite cryogel significantly accelerates the wound healing rate. These findings highlight the multifunctional nature of composite cryogels and their promising potential for clinical applications as advanced wound dressings.

2.
ACS Appl Bio Mater ; 7(7): 4542-4552, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38957152

RESUMEN

Surface-engineered gold nanoparticles have been considered as versatile systems for theranostics applications. Moreover, surface covering or stabilizing agents on gold nanoparticles especially gold nanobipyramids (AuNBPs) provides an extra space for cargo molecules entrapment. However, it is not well studied yet and also the preparation of AuNBPs still remains dependent largely on cetyltrimethylammonium bromide (CTAB), a cytotoxic surfactant. Therefore, the direct use of CTAB stabilized nanoparticles is not recommended for cancer theranostics applications. Herein, we address an approach of dodecyl ethyl dimethylammonium bromide (DMAB) as biocompatible structure directing agent for AuNBPs, which also accommodate anticancer drug doxorubicin (45%), an additional chemotherapeutics agent. Upon near-infrared light (NIR, 808 nm) exposure, engineered AuNBPs exhibit (i) better phototransduction (51 °C) due to NIR absorption ability (650-900 nm), (ii) photo triggered drug release (more than 80%), and (iii) synergistic chemophototherapy for breast cancer cells. Drug release response has been evaluated in tumor microenvironment conditions (84% in acidic pH and 80% at high GSH) due to protonation and high affinity of thiol binding with AuNBPs followed by DMAB replacement. Intracellular glutathione (GSH, 5-7.5 mM) replaces DMAB from AuNBPs, which cause easy aggregation of nanoparticles as corroborated by colorimetric shifts, suggesting their utilization as a molecular sensing probe of early stage cancer biomarkers. Our optimized recipe yield is monodisperse DMAB-AuNBPs with ∼90% purity even at large scales (500 mL volume per batch). DMAB-AuNBPs show better cell viability (more than 90%) across all concentrations (5-500 ug/mL) when directly compared to CTAB-AuNBPs (less than 10%). Our findings show the potential of DMAB-AuNBPs for early stage cancer detection and theranostics applications.


Asunto(s)
Doxorrubicina , Ensayos de Selección de Medicamentos Antitumorales , Oro , Nanopartículas del Metal , Tamaño de la Partícula , Oro/química , Oro/farmacología , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , Nanopartículas del Metal/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Ensayo de Materiales , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Liberación de Fármacos , Estructura Molecular
3.
J Mater Chem B ; 12(30): 7267-7291, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38973587

RESUMEN

With the advent of DNA nanotechnology, DNA-based biomaterials have emerged as a unique class of materials at the center of various biological advances. Owing to DNA's high modification capacity via programmable Watson-Crick base-pairing, DNA structures of desired design with increased complexity have been developed. However, the limited scalability, along with poor mechanical properties, high synthesis costs, and poor stability, reduced the adaptability of DNA-based materials to complex biological applications. DNA-based hybrid biomaterials were designed to overcome these limitations by conjugating DNA with functional materials. Today, DNA-based hybrid materials have attracted significant attention in biological engineering with broad application prospects in biomedicine, clinical diagnosis, and nanodevices. Here, we summarize the recent advances in DNA-based hybrid materials with an in-depth understanding of general molecular design principles, functionalities, and applications. Finally, the challenges and prospects associated with DNA-based hybrid materials are discussed at the end of this review.


Asunto(s)
Materiales Biocompatibles , ADN , ADN/química , Materiales Biocompatibles/química , Humanos , Nanotecnología/métodos , Animales
4.
Biomed Mater ; 19(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38387063

RESUMEN

Maintaining the continuous oxygen supply and proper cell growth before blood vessel ingrowth at the bone defect site are considerably significant issues in bone regeneration. Oxygen-producing scaffolds can supply oxygen and avoid hypoxia leading to expedited bone regeneration. Herein, first oxygen-producing calcium peroxide nanoparticles (CPO NPs) are synthesized, and subsequently, the various amounts of synthesized CPO NPs (0.1, 0.5, and 1 wt/v%) loaded in the scaffold composite, which is developed by simple physical blending of chitosan (CS) and polycaprolactone (PCL) polymers. To deliver the synergistic therapeutic effect, dexamethasone (DEX), known for its potential anti-inflammatory and osteogenic properties, is loaded into the nanocomposite scaffolds. The extensive physicochemical characterizations of nanocomposite scaffolds confirm the successful loading of CPO NPs, adequate porous morphology, pore size, hydrophilicity, and biodegradability.In vitro, biological studies support the antibacterial, hemocompatible, and cytocompatible (MG-63 and MC3T3-E1 cells) nature of the material when tested on respective cells. Field emission scanning electron microscopy and energy-dispersive x-ray spectroscopy confirm the successful biomineralization of the scaffolds. Scaffolds also exhibit the sustained release of DEX and efficient protein adsorption. This study revealed that a nanoengineered scaffold loaded with CPO NPs (PCL/CS/DEX/CPO 3) is a suitable candidate for bone tissue regeneration.


Asunto(s)
Quitosano , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos , Preparaciones de Acción Retardada , Oxígeno , Polímeros/química , Osteogénesis , Quitosano/química , Regeneración Ósea , Dexametasona/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA