Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Neurocrit Care ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580801

RESUMEN

BACKGROUND: Hypoxemia is the main modifiable factor preventing lungs from being transplanted from organ donors after brain death. One major contributor to impaired oxygenation in patients with brain injury is atelectasis. Apnea testing, an integral component of brain death declaration, promotes atelectasis and can worsen hypoxemia. In this study, we tested whether performing a recruitment maneuver (RM) after apnea testing could mitigate hypoxemia and atelectasis. METHODS: During the study period, an RM (positive end-expiratory pressure of 15 cm H2O for 15 s then 30 cm H2O for 30 s) was performed immediately after apnea testing. We measured partial pressure of oxygen, arterial (PaO2) before and after RM. The primary outcomes were oxygenation (PaO2 to fraction of inspired oxygen [FiO2] ratio) and the severity of radiographic atelectasis (proportion of lung without aeration on computed tomography scans after brain death, quantified using an image analysis algorithm) in those who became organ donors. Outcomes in RM patients were compared with control patients undergoing apnea testing without RM in the previous 2 years. RESULTS: Recruitment maneuver was performed in 54 patients after apnea testing, with a median immediate increase in PaO2 of 63 mm Hg (interquartile range 0-109, p = 0.07). Eighteen RM cases resulted in hypotension, but none were life-threatening. Of this cohort, 37 patients became organ donors, compared with 37 donors who had apnea testing without RM. The PaO2:FiO2 ratio was higher in the RM group (355 ± 129 vs. 288 ± 127, p = 0.03), and fewer had hypoxemia (PaO2:FiO2 ratio < 300 mm Hg, 22% vs. 57%; p = 0.04) at the start of donor management. The RM group showed less radiographic atelectasis (median 6% vs. 13%, p = 0.045). Although there was no difference in lungs transplanted (35% vs. 24%, p = 0.44), both better oxygenation and less atelectasis were associated with a higher likelihood of lungs being transplanted. CONCLUSIONS: Recruitment maneuver after apnea testing reduces hypoxemia and atelectasis in organ donors after brain death. This effect may translate into more lungs being transplanted.

2.
J Neurointerv Surg ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637151

RESUMEN

BACKGROUND: Cerebral edema (CED) is associated with poorer outcome in patients with acute ischemic stroke (AIS). The aim of the study was to investigate the factors contributing to greater early CED formation in patients with AIS who underwent endovascular therapy (EVT) and its association with functional outcome. METHODS: We conducted a multicenter cohort study of patients with an anterior circulation AIS undergoing EVT. The volume of cerebrospinal fluid (CSF) was extracted from baseline and 24-hour follow-up CT using an automated algorithm. The severity of CED was quantified by the percentage reduction in CSF volume between CT scans (∆CSF). The primary endpoint was a shift towards an unfavorable outcome, assessed by modified Rankin Scale (mRS) score at 3 months. Multivariable ordinal logistic regression analyses were performed. The ∆CSF threshold that predicted unfavorable outcome was selected using receiver operating characteristic curve analysis. RESULTS: We analyzed 201 patients (mean age 72.7 years, 47.8% women) in whom CED was assessable for 85.6%. Higher systolic blood pressure during EVT and failure to achieve modified Thrombolysis In Cerebral Infarction (mTICI) 3 were found to be independent predictors of greater CED. ∆CSF was independently associated with the probability of a one-point worsening in the mRS score (common odds ratio (cOR) 1.05, 95% CI 1.03 to 1.08) after adjusting for age, baseline mRS, National Institutes of Health Stroke Scale (NIHSS), and number of passes. Displacement of more than 25% of CSF was associated with an unfavorable outcome (OR 6.09, 95% CI 3.01 to 12.33) and mortality (OR 6.72, 95% CI 2.94 to 15.32). CONCLUSIONS: Early CED formation in patients undergoing EVT was affected by higher blood pressure and incomplete reperfusion. The extent of early CED, measured by automated ∆CSF, was associated with worse outcomes.

4.
Neurocrit Care ; 40(1): 303-313, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37188885

RESUMEN

BACKGROUND: Cerebral edema has primarily been studied using midline shift or clinical deterioration as end points, which only captures the severe and delayed manifestations of a process affecting many patients with stroke. Quantitative imaging biomarkers that measure edema severity across the entire spectrum could improve its early detection, as well as identify relevant mediators of this important stroke complication. METHODS: We applied an automated image analysis pipeline to measure the displacement of cerebrospinal fluid (ΔCSF) and the ratio of lesional versus contralateral hemispheric cerebrospinal fluid (CSF) volume (CSF ratio) in a cohort of 935 patients with hemispheric stroke with follow-up computed tomography scans taken a median of 26 h (interquartile range 24-31) after stroke onset. We determined diagnostic thresholds based on comparison to those without any visible edema. We modeled baseline clinical and radiographic variables against each edema biomarker and assessed how each biomarker was associated with stroke outcome (modified Rankin Scale at 90 days). RESULTS: The displacement of CSF and CSF ratio were correlated with midline shift (r = 0.52 and - 0.74, p < 0.0001) but exhibited broader ranges. A ΔCSF of greater than 14% or a CSF ratio below 0.90 identified those with visible edema: more than half of the patients with stroke met these criteria, compared with only 14% who had midline shift at 24 h. Predictors of edema across all biomarkers included a higher National Institutes of Health Stroke Scale score, a lower Alberta Stroke Program Early CT score, and lower baseline CSF volume. A history of hypertension and diabetes (but not acute hyperglycemia) predicted greater ΔCSF but not midline shift. Both ΔCSF and a lower CSF ratio were associated with worse outcome, adjusting for age, National Institutes of Health Stroke Scale score, and Alberta Stroke Program Early CT score (odds ratio 1.7, 95% confidence interval 1.3-2.2 per 21% ΔCSF). CONCLUSIONS: Cerebral edema can be measured in a majority of patients with stroke on follow-up computed tomography using volumetric biomarkers evaluating CSF shifts, including in many without visible midline shift. Edema formation is influenced by clinical and radiographic stroke severity but also by chronic vascular risk factors and contributes to worse stroke outcomes.


Asunto(s)
Edema Encefálico , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Isquemia Encefálica/complicaciones , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/epidemiología , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/epidemiología , Edema Encefálico/etiología , Incidencia , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/epidemiología , Biomarcadores , Edema/complicaciones , Factores de Riesgo , Resultado del Tratamiento
5.
J Cereb Blood Flow Metab ; 44(3): 317-332, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38017387

RESUMEN

Aneurysmal subarachnoid hemorrhage (SAH) carries significant mortality and morbidity, with nearly half of SAH survivors having major cognitive dysfunction that impairs their functional status, emotional health, and quality of life. Apart from the initial hemorrhage severity, secondary brain injury due to early brain injury and delayed cerebral ischemia plays a leading role in patient outcome after SAH. While many strategies to combat secondary brain injury have been developed in preclinical studies and tested in late phase clinical trials, only one (nimodipine) has proven efficacious for improving long-term functional outcome. The causes of these failures are likely multitude, but include use of therapies targeting only one element of what has proven to be multifactorial brain injury process. Conditioning is a therapeutic strategy that leverages endogenous protective mechanisms to exert powerful and remarkably pleiotropic protective effects against injury to all major cell types of the CNS. The aim of this article is to review the current body of evidence for the use of conditioning agents in SAH, summarize the underlying neuroprotective mechanisms, and identify gaps in the current literature to guide future investigation with the long-term goal of identifying a conditioning-based therapeutic that significantly improves functional and cognitive outcomes for SAH patients.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Humanos , Hemorragia Subaracnoidea/terapia , Hemorragia Subaracnoidea/tratamiento farmacológico , Calidad de Vida , Nimodipina , Isquemia Encefálica/tratamiento farmacológico , Lesiones Encefálicas/complicaciones , Vasoespasmo Intracraneal/etiología
7.
N Engl J Med ; 389(22): 2029-2038, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38048188

RESUMEN

BACKGROUND: Hemodynamic instability and myocardial dysfunction are major factors preventing the transplantation of hearts from organ donors after brain death. Intravenous levothyroxine is widely used in donor care, on the basis of observational data suggesting that more organs may be transplanted from donors who receive hormonal supplementation. METHODS: In this trial involving 15 organ-procurement organizations in the United States, we randomly assigned hemodynamically unstable potential heart donors within 24 hours after declaration of death according to neurologic criteria to open-label infusion of intravenous levothyroxine (30 µg per hour for a minimum of 12 hours) or saline placebo. The primary outcome was transplantation of the donor heart; graft survival at 30 days after transplantation was a prespecified recipient safety outcome. Secondary outcomes included weaning from vasopressor therapy, donor ejection fraction, and number of organs transplanted per donor. RESULTS: Of the 852 brain-dead donors who underwent randomization, 838 were included in the primary analysis: 419 in the levothyroxine group and 419 in the saline group. Hearts were transplanted from 230 donors (54.9%) in the levothyroxine group and 223 (53.2%) in the saline group (adjusted risk ratio, 1.01; 95% confidence interval [CI], 0.97 to 1.07; P = 0.57). Graft survival at 30 days occurred in 224 hearts (97.4%) transplanted from donors assigned to receive levothyroxine and 213 hearts (95.5%) transplanted from donors assigned to receive saline (difference, 1.9 percentage points; 95% CI, -2.3 to 6.0; P<0.001 for noninferiority at a margin of 6 percentage points). There were no substantial between-group differences in weaning from vasopressor therapy, ejection fraction on echocardiography, or organs transplanted per donor, but more cases of severe hypertension and tachycardia occurred in the levothyroxine group than in the saline group. CONCLUSIONS: In hemodynamically unstable brain-dead potential heart donors, intravenous levothyroxine infusion did not result in significantly more hearts being transplanted than saline infusion. (Funded by Mid-America Transplant and others; ClinicalTrials.gov number, NCT04415658.).


Asunto(s)
Muerte Encefálica , Trasplante de Corazón , Tiroxina , Donantes de Tejidos , Obtención de Tejidos y Órganos , Humanos , Encéfalo , Tiroxina/administración & dosificación , Administración Intravenosa , Hemodinámica
8.
J Clin Med ; 12(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685555

RESUMEN

Cerebral autoregulation impairment is a critical aspect of subarachnoid hemorrhage (SAH)-induced secondary brain injury and is also shown to be an independent predictor of delayed cerebral ischemia (DCI) and poor neurologic outcomes. Interestingly, intraoperative hemodynamic and ventilatory parameters were shown to influence patient outcomes after SAH. The aim of the current study was to evaluate the association of intraoperative hypotension and hypocapnia with the occurrence of angiographic vasospasm, DCI, and neurologic outcomes at discharge. Intraoperative data were collected for 390 patients with aneurysmal SAH who underwent general anesthesia for aneurysm clipping or coiling between January 2010 and May 2018. We measured the mean intraoperative blood pressure and end-tidal carbon dioxide (ETCO2), as well as the area under the curve (AUC) for the burden of hypotension: SBP below 100 or MBP below 65 and hypocapnia (ETCO2 < 30), during the intraoperative period. The outcome measures were angiographic vasospasm, DCI, and the neurologic outcomes at discharge as measured by the modified Rankin scale score (an mRS of 0-2 is a good outcome, and 3-6 is a poor outcome). Univariate and logistic regression analyses were performed to evaluate whether blood pressure (BP) and ETCO2 variables were independently associated with outcome measures. Out of 390 patients, 132 (34%) developed moderate-to-severe vasospasm, 114 (29%) developed DCI, and 46% (169) had good neurologic outcomes at discharge. None of the measured intraoperative BP and ETCO2 variables were associated with angiographic vasospasm, DCI, or poor neurologic outcomes. Our study did not identify an independent association between the degree of intraoperative hypotension or hypocapnia in relation to angiographic vasospasm, DCI, or the neurologic outcomes at discharge in SAH patients.

9.
J Neuroimaging ; 33(4): 606-616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37095592

RESUMEN

BACKGROUND AND PURPOSE: Volumetric and densitometric biomarkers have been proposed to better quantify cerebral edema after stroke, but their relative performance has not been rigorously evaluated. METHODS: Patients with large vessel occlusion stroke from three institutions were analyzed. An automated pipeline extracted brain, cerebrospinal fluid (CSF), and infarct volumes from serial CTs. Several biomarkers were measured: change in global CSF volume from baseline (ΔCSF); ratio of CSF volumes between hemispheres (CSF ratio); and relative density of infarct region compared with mirrored contralateral region (net water uptake [NWU]). These were compared to radiographic standards, midline shift and relative hemispheric volume (RHV) and malignant edema, defined as deterioration resulting in need for osmotic therapy, decompressive surgery, or death. RESULTS: We analyzed 255 patients with 210 baseline CTs, 255 24-hour CTs, and 81 72-hour CTs. Of these, 35 (14%) developed malignant edema and 63 (27%) midline shift. CSF metrics could be calculated for 310 (92%), while NWU could only be obtained from 193 (57%). Peak midline shift was correlated with baseline CSF ratio (ρ = -.22) and with CSF ratio and ΔCSF at 24 hours (ρ = -.55/.63) and 72 hours (ρ = -.66/.69), but not with NWU (ρ = .15/.25). Similarly, CSF ratio was correlated with RHV (ρ = -.69/-.78), while NWU was not. Adjusting for age, National Institutes of Health Stroke Scale, tissue plasminogen activator treatment, and Alberta Stroke Program Early CT Score, CSF ratio (odds ratio [OR]: 1.95 per 0.1, 95% confidence interval [CI]: 1.52-2.59) and ΔCSF at 24 hours (OR: 1.87 per 10%, 95% CI: 1.47-2.49) were associated with malignant edema. CONCLUSION: CSF volumetric biomarkers can be automatically measured from almost all routine CTs and correlate better with standard edema endpoints than net water uptake.


Asunto(s)
Edema Encefálico , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Edema Encefálico/diagnóstico por imagen , Activador de Tejido Plasminógeno , Accidente Cerebrovascular/patología , Isquemia Encefálica/patología , Tomografía Computarizada por Rayos X/métodos , Accidente Cerebrovascular Isquémico/complicaciones , Edema/complicaciones , Biomarcadores , Infarto/complicaciones , Agua , Estudios Retrospectivos
10.
Stroke ; 54(5): 1426-1440, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36866673

RESUMEN

Aneurysmal subarachnoid hemorrhage is a devastating condition causing significant morbidity and mortality. While outcomes from subarachnoid hemorrhage have improved in recent years, there continues to be significant interest in identifying therapeutic targets for this disease. In particular, there has been a shift in emphasis toward secondary brain injury that develops in the first 72 hours after subarachnoid hemorrhage. This time period of interest is referred to as the early brain injury period and comprises processes including microcirculatory dysfunction, blood-brain-barrier breakdown, neuroinflammation, cerebral edema, oxidative cascades, and neuronal death. Advances in our understanding of the mechanisms defining the early brain injury period have been accompanied by improved imaging and nonimaging biomarkers for identifying early brain injury, leading to the recognition of an elevated clinical incidence of early brain injury compared with prior estimates. With the frequency, impact, and mechanisms of early brain injury better defined, there is a need to review the literature in this area to guide preclinical and clinical study.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/complicaciones , Incidencia , Microcirculación , Barrera Hematoencefálica , Lesiones Encefálicas/complicaciones
12.
World Neurosurg ; 170: e214-e222, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36323345

RESUMEN

OBJECTIVE: The role of hemorrhage volume in risk of vasospasm, delayed cerebral ischemia (DCI), and poor outcomes after aneurysmal subarachnoid hemorrhage (SAH) is well established. However, the relative contribution of blood within individual compartments is unclear. We present an automated technique for measuring not only total but also volumes of blood in each major compartment after SAH. METHODS: We trained convolutional neural networks to identify compartmental blood (cisterns, sulci, and ventricles) from baseline computed tomography scans of patients with SAH. We compared automated blood volumes against traditional markers of bleeding (modified Fisher score [mFS], Hijdra sum score [HSS]) in 190 SAH patients for prediction of vasospasm, DCI, and functional status (modified Rankin Scale) at hospital discharge. RESULTS: Combined cisternal and sulcal volume was better correlated with mFS and HSS than cisternal volume alone (ρ = 0.63 vs. 0.58 and 0.75 vs. 0.70, P < 0.001). Only blood volume in combined cisternal plus sulcal compartments was independently associated with DCI (OR 1.023 per mL, 95% CI 1.002-1.048), after adjusting for clinical factors while ventricular blood volume was not. Total and specifically sulcal blood volume was strongly associated with poor outcome (OR 1.03 per mL, 1.01-1.06, P = 0.006 and OR 1.04, 1.00-1.08 for sulcal) as was HSS (OR 1.06 per point, 1.00-1.12, P = 0.04), while mFS was not (P = 0.24). CONCLUSIONS: An automated imaging algorithm can measure the volume of bleeding after SAH within individual compartments, demonstrating cisternal plus sulcal (and not ventricular) blood contributes to risk of DCI/vasospasm. Automated blood volume was independently associated with outcome, while qualitative grading was not.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Isquemia Encefálica , Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Humanos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/diagnóstico por imagen , Infarto Cerebral/complicaciones , Isquemia Encefálica/etiología , Isquemia Encefálica/complicaciones , Volumen Sanguíneo , Tomografía Computarizada por Rayos X/métodos , Enfermedades del Sistema Nervioso Autónomo/complicaciones
13.
Front Cardiovasc Med ; 9: 940696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35872910

RESUMEN

Background: Occult atrial fibrillation (AF) is one of the major causes of embolic stroke of undetermined source (ESUS). Knowing the underlying etiology of an ESUS will reduce stroke recurrence and/or unnecessary use of anticoagulants. Understanding cardioembolic strokes (CES), whose main cause is AF, will provide tools to select patients who would benefit from anticoagulants among those with ESUS or AF. We aimed to discover novel loci associated with CES and create a polygenetic risk score (PRS) for a more efficient CES risk stratification. Methods: Multitrait analysis of GWAS (MTAG) was performed with MEGASTROKE-CES cohort (n = 362,661) and AF cohort (n = 1,030,836). We considered significant variants and replicated those variants with MTAG p-value < 5 × 10-8 influencing both traits (GWAS-pairwise) with a p-value < 0.05 in the original GWAS and in an independent cohort (n = 9,105). The PRS was created with PRSice-2 and evaluated in the independent cohort. Results: We found and replicated eleven loci associated with CES. Eight were novel loci. Seven of them had been previously associated with AF, namely, CAV1, ESR2, GORAB, IGF1R, NEURL1, WIPF1, and ZEB2. KIAA1755 locus had never been associated with CES/AF, leading its index variant to a missense change (R1045W). The PRS generated has been significantly associated with CES improving discrimination and patient reclassification of a model with age, sex, and hypertension. Conclusion: The loci found significantly associated with CES in the MTAG, together with the creation of a PRS that improves the predictive clinical models of CES, might help guide future clinical trials of anticoagulant therapy in patients with ESUS or AF.

14.
Front Neurol ; 13: 898728, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832178

RESUMEN

Quantifying the extent and evolution of cerebral edema developing after stroke is an important but challenging goal. Lesional net water uptake (NWU) is a promising CT-based biomarker of edema, but its measurement requires manually delineating infarcted tissue and mirrored regions in the contralateral hemisphere. We implement an imaging pipeline capable of automatically segmenting the infarct region and calculating NWU from both baseline and follow-up CTs of large-vessel occlusion (LVO) patients. Infarct core is extracted from CT perfusion images using a deconvolution algorithm while infarcts on follow-up CTs were segmented from non-contrast CT (NCCT) using a deep-learning algorithm. These infarct masks were flipped along the brain midline to generate mirrored regions in the contralateral hemisphere of NCCT; NWU was calculated as one minus the ratio of densities between regions, removing voxels segmented as CSF and with HU outside thresholds of 20-80 (normal hemisphere and baseline CT) and 0-40 (infarct region on follow-up). Automated results were compared with those obtained using manually-drawn infarcts and an ASPECTS region-of-interest based method that samples densities within the infarct and normal hemisphere, using intraclass correlation coefficient (ρ). This was tested on serial CTs from 55 patients with anterior circulation LVO (including 66 follow-up CTs). Baseline NWU using automated core was 4.3% (IQR 2.6-7.3) and correlated with manual measurement (ρ = 0.80, p < 0.0001) and ASPECTS (r = -0.60, p = 0.0001). Automatically segmented infarct volumes (median 110-ml) correlated to manually-drawn volumes (ρ = 0.96, p < 0.0001) with median Dice similarity coefficient of 0.83 (IQR 0.72-0.90). Automated NWU was 24.6% (IQR 20-27) and highly correlated to NWU from manually-drawn infarcts (ρ = 0.98) and the sampling-based method (ρ = 0.68, both p < 0.0001). We conclude that this automated imaging pipeline is able to accurately quantify region of infarction and NWU from serial CTs and could be leveraged to study the evolution and impact of edema in large cohorts of stroke patients.

15.
Neurocrit Care ; 37(Suppl 2): 157-159, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35799093
16.
Brain ; 145(7): 2394-2406, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35213696

RESUMEN

During the first hours after stroke onset, neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between the National Institutes of Health Stroke Scale (NIHSS) within 6 h of stroke onset and NIHSS at 24 h. A total of 5876 individuals from seven countries (Spain, Finland, Poland, USA, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of NIHSS at 24 h of variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture from that of stroke risk. Eight loci (1p21.1, 1q42.2, 2p25.1, 2q31.2, 2q33.3, 5q33.2, 7p21.2 and 13q31.1) were genome-wide significant and explained 1.8% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each locus. Expression quantitative trait loci mapping and summary data-based Mendelian randomization indicate that ADAM23 (log Bayes factor = 5.41) was driving the association for 2q33.3. Gene-based analyses suggested that GRIA1 (log Bayes factor = 5.19), which is predominantly expressed in the brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated GNPAT (log Bayes factor = 7.64) ABCB5 (log Bayes factor = 5.97) for the 1p21.1 and 7p21.1 loci. Human brain single-nuclei RNA-sequencing indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23, a presynaptic protein and GRIA1, a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability. These data provide the first genetic evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischaemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Teorema de Bayes , Isquemia Encefálica/complicaciones , Isquemia Encefálica/genética , Estudio de Asociación del Genoma Completo , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/genética , Estados Unidos
17.
Neurocrit Care ; 36(2): 471-482, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34417703

RESUMEN

BACKGROUND: Malignant cerebral edema is a devastating complication of stroke, resulting in deterioration and death if hemicraniectomy is not performed prior to herniation. Current approaches for predicting this relatively rare complication often require advanced imaging and still suffer from suboptimal performance. We performed a pilot study to evaluate whether neural networks incorporating data extracted from routine computed tomography (CT) imaging could enhance prediction of edema in a large diverse stroke cohort. METHODS: An automated imaging pipeline retrospectively extracted volumetric data, including cerebrospinal fluid (CSF) volumes and the hemispheric CSF volume ratio, from baseline and 24 h CT scans performed in participants of an international stroke cohort study. Fully connected and long short-term memory (LSTM) neural networks were trained using serial clinical and imaging data to predict those who would require hemicraniectomy or die with midline shift. The performance of these models was tested, in comparison with regression models and the Enhanced Detection of Edema in Malignant Anterior Circulation Stroke (EDEMA) score, using cross-validation to construct precision-recall curves. RESULTS: Twenty of 598 patients developed malignant edema (12 required surgery, 8 died). The regression model provided 95% recall but only 32% precision (area under the precision-recall curve [AUPRC] 0.74), similar to the EDEMA score (precision 28%, AUPRC 0.66). The fully connected network did not perform better (precision 33%, AUPRC 0.71), but the LSTM model provided 100% recall and 87% precision (AUPRC 0.97) in the overall cohort and the subgroup with a National Institutes of Health Stroke Scale (NIHSS) score ≥ 8 (p = 0.0001 vs. regression and fully connected models). Features providing the most predictive importance were the hemispheric CSF ratio and NIHSS score measured at 24 h. CONCLUSIONS: An LSTM neural network incorporating volumetric data extracted from routine CT scans identified all cases of malignant cerebral edema by 24 h after stroke, with significantly fewer false positives than a fully connected neural network, regression model, and the validated EDEMA score. This preliminary work requires prospective validation but provides proof of principle that a deep learning framework could assist in selecting patients for surgery prior to deterioration.


Asunto(s)
Edema Encefálico , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Edema Encefálico/líquido cefalorraquídeo , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/etiología , Estudios de Cohortes , Humanos , Redes Neurales de la Computación , Proyectos Piloto , Estudios Retrospectivos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen
19.
Neurocrit Care ; 36(3): 1011-1021, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34966956

RESUMEN

BACKGROUND: Up to 20% of patients with cerebellar infarcts will develop malignant edema and deteriorate clinically. Radiologic measures, such as initial infarct size, aid in identifying individuals at risk. Studies of anterior circulation stroke suggest that mapping early edema formation improves the ability to predict deterioration; however, the kinetics of edema in the posterior fossa have not been well characterized. We hypothesized that faster edema growth within the first hours after acute cerebellar stroke would be an indicator for individuals requiring surgical intervention and those with worse neurological outcomes. METHODS: Consecutive patients admitted to the neurological intensive care unit with acute cerebellar infarction were retrospectively identified. Hypodense regions of infarct and associated edema, "infarct-edema", were delineated by using ABC/2 for all computed tomography (CT) scans up to 14 days from last known well. To examine how rate of infarct-edema growth varied across clinical variables and surgical intervention status, nonlinear and linear mixed-effect models were performed over 2 weeks and 2 days, respectively. In patients with at least two CT scans, multivariable logistic regression examined clinical and radiological predictors of surgical intervention (defined as extraventricular drainage and/or posterior fossa decompression) and poor clinical outcome (discharge to skilled nursing facility, long-term acute care facility, hospice, or morgue). RESULTS: Of 150 patients with acute cerebellar infarction, 38 (25%) received surgical intervention and 45 (30%) had poor clinical outcome. Age, admission National Institutes of Health Stroke Scale (NIHSS) score, and baseline infarct-edema volume did not differ, but bilateral/multiple vascular territory involvement was more frequent (87% vs. 50%, p < 0.001) in the surgical group than that in the medical intervention group. On 410 serial CTs, infarct-edema volume progressed rapidly over the first 2 days, followed by a subsequent plateau. Of 112 patients who presented within two days, infarct-edema growth rate was greater in the surgical group (20.1 ml/day vs. 8.01 ml/day, p = 0.002). Of 67 patients with at least two scans, after adjusting for baseline infarct-edema volume, vascular territory, and NIHSS, infarct-edema growth rate over the first 2 days (odds ratio 2.55; 95% confidence interval 1.40-4.65) was an independent, and the strongest, predictor of surgical intervention. Further, early infarct-edema growth rate predicted poor clinical outcome (odds ratio 2.20; 95% confidence interval 1.30-3.71), independent of baseline infarct-edema volume, brainstem infarct, and NIHSS. CONCLUSIONS: Early infarct-edema growth rate, measured via ABC/2, is a promising biomarker for identifying the need for surgical intervention in patients with acute cerebellar infarction. Additionally, it may be used to facilitate discussions regarding patient prognosis.


Asunto(s)
Isquemia Encefálica , Infartos del Tronco Encefálico , Enfermedades Cerebelosas , Accidente Cerebrovascular , Edema , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
20.
Stroke ; 53(3): 904-912, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732071

RESUMEN

BACKGROUND: Inhalational anesthetics were associated with reduced incidence of angiographic vasospasm and delayed cerebral ischemia (DCI) in patients with aneurysmal subarachnoid hemorrhage (SAH). Whether intravenous anesthetics provide similar level of protection is not known. METHODS: Anesthetic data were collected retrospectively for patients with SAH who received general anesthesia for aneurysm repair between January 1, 2014 and May 31, 2018, at 2 academic centers in the United States (one employing primarily inhalational and the other primarily intravenous anesthesia with propofol). We compared the outcomes of angiographic vasospasm, DCI, and neurological outcome (measured by disposition at hospital discharge), between the 2 sites, adjusting for potential confounders. RESULTS: We compared 179 patients with SAH receiving inhalational anesthetics at one institution to 206 patients with SAH receiving intravenous anesthetics at the second institution. The rates of angiographic vasospasm between inhalational versus intravenous anesthetic groups were 32% versus 52% (odds ratio, 0.49 [CI, 0.32-0.75]; P=0.001) and DCI were 21% versus 40% (odds ratio, 0.47 [CI, 0.29-0.74]; P=0.001), adjusting for imbalances between sites/groups, Hunt-Hess and Fisher grades, type of aneurysm treatment, and American Society of Anesthesiology status. No impact of anesthetics on neurological outcome at time of discharge was noted with rates of good discharge outcome between inhalational versus intravenous anesthetic groups at (78% versus 72%, P=0.23). CONCLUSIONS: Our data suggest that those who received inhalational versus intravenous anesthetic for ruptured aneurysm repair had significant protection against SAH-induced angiographic vasospasm and DCI. Although we cannot fully disentangle site-specific versus anesthetic effects in this comparative study, these results, when coupled with preclinical data demonstrating a similar protective effect of inhalational anesthetics on vasospasm and DCI, suggest that inhalational anesthetics may be preferable for patients with SAH undergoing aneurysm repair. Additional investigations examining the effect of inhalational anesthetics on other SAH outcomes such as early brain injury and long-term neurological outcomes are warranted.


Asunto(s)
Anestésicos Intravenosos/uso terapéutico , Isquemia Encefálica/prevención & control , Propofol/uso terapéutico , Hemorragia Subaracnoidea/complicaciones , Adulto , Anciano , Anestésicos Intravenosos/administración & dosificación , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/etiología , Angiografía Cerebral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Propofol/administración & dosificación , Estudios Retrospectivos , Hemorragia Subaracnoidea/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...