Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comp Med ; 70(4): 359-369, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32674749

RESUMEN

The unexpected seroconversion of sentinel mice in our facility to murine T lymphotrophic virus (MTLV) positivity led to our identification of a novel murine astrovirus that we designated murine astrovirus 2 (MuAstV-2). During our investigation, MuAstV-2 was found to be a contaminant of the T helper cell line (D10. G4.1) that was used to generate the MTLV antigen that we included in the multiplex fluorometric immunoassay (MFIA) that we used for sentinel screening. We eventually determined that cross-reactivity with the astrovirus generated a positive result in the MTLV assay. A confirmatory immunofluorometric assay (IFA) using the same MTLV-infected cell line yielded a similar result. However, the use of antigen prepared from MTLV-infected neonatal mouse thymus did not reproduce a positive result, leading us to suspect that the seroreactivity we had observed was not due to infection with MTLV. A mouse antibody production test showed that mice inoculated with naïve D10. G4.1 cells and their contact sentinels tested positive for MTLV using cell-line generated antigen, but tested negative in assays using MTLV antigen produced in mice. Metagenomic analysis was subsequently used to identify MuAstV-2 in feces from 2 sentinel mice that had recently seroconverted to MTLV. Two closely related astrovirus sequences (99.6% capsid identity) were obtained and shared 95% capsid amino acid identity with the MuAstV-2 virus sequenced from the D10. G4.1 cell line. These viruses are highly divergent from previously identified murine astroviruses, displaying <30% capsid identity, yet were closely related to murine astrovirus 2 (85% capsid identity), which had recently been isolated from feral mice in New York City. A MuAstV-2 specific PCR assay was developed and used to eradicate MuAstV-2 from the infected colony using a test and cull strategy. The newly identified MuAstV2 readily transmits to immunocompetent mouse strains by fecal-oral exposure, but fails to infect NOD-Prkdcem26Cd52Il2rgem26Cd22/NjuCrl (NCG) mice, which have significantly impaired adaptive and innate immune systems. Neither immunocompetent nor immunodeficient mice showed any astrovirus-associated pathology. MuAstV-2 may provide a valuable model for the study of specific aspects of astrovirus pathogenesis and virus-host interactions.


Asunto(s)
Infecciones por Astroviridae/metabolismo , Animales , Astroviridae , Infecciones por Astroviridae/virología , Línea Celular , Heces/virología , Genoma Viral , Inmunocompetencia/genética , Ratones/virología , Enfermedades de los Roedores/virología , Linfocitos T Colaboradores-Inductores/inmunología
2.
J Vis Exp ; (58)2011 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-22215024

RESUMEN

To ensure the quality of animal models used in biomedical research we have developed a number of diagnostic testing strategies and methods to determine if animals have been exposed to adventitious infectious agents (viruses, mycoplasma, and other fastidious microorganisms). Infections of immunocompetent animals are generally transient, yet serum antibody responses to infection often can be detected within days to weeks and persist throughout the life of the host. Serology is the primary diagnostic methodology by which laboratory animals are monitored. Historically the indirect enzyme-linked immunosorbent assay (ELISA) has been the main screening method for serosurveillance. The ELISA is performed as a singleplex, in which one microbial antigen-antibody reaction is measured per well. In comparison the MFIA is performed as a multiplexed assay. Since the microspheres come in 100 distinct color sets, as many as 100 different assays can be performed simultaneously in a single microplate well. This innovation decreases the amount of serum, reagents and disposables required for routine testing while increasing the amount of information obtained from a single test well. In addition, we are able to incorporate multiple internal control beads to verify sample and system suitability and thereby assure the accuracy of results. These include tissue control and IgG anti-test serum species immunoglobulin (αIg) coated bead sets to evaluate sample suitability. As in the ELISA and IFA, the tissue control detects non-specific binding of serum immunoglobulin. The αIg control (Serum control) confirms that serum has been added and contains a sufficient immunoglobulin concentration while the IgG control bead (System Suitability control), coated with serum species immunoglobulin, demonstrates that the labeled reagents and Luminex reader are functioning properly.


Asunto(s)
Fluorometría/métodos , Inmunoensayo/métodos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...