Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biotechnol ; 64(3): 221-244, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34628588

RESUMEN

The annual herb, Ageratum conyzoides L. (Asteraceae), is distributed throughout the world. Although invasive, it can be very useful as a source of essential oils, pharmaceuticals, biopesticides, and bioenergy. However, very limited information exists on the molecular basis of its different utility as previous investigations were mainly focused on phytochemical/biological activity profiling. Here we have explored various properties of A. conyzoides that may offer environmental, ecological, agricultural, and health benefits. As this aromatic plant harbors many important secondary metabolites that may have various implications, biotechnological interventions such as genomics, metabolomics and tissue-culture can be indispensable tools for their mass-production. Further, A. conyzoides acts as a natural reservoir of begomoviruses affecting a wide range of plant species. As the mechanisms of disease spreading and crop infection are not fully clear, whole-genome sequencing and various advanced molecular technologies including RNAi, CRISPER/Cas9, multi-omics approaches, etc., may aid to decipher the molecular mechanism of such disease development and thus, can be useful in crop protection. Overall, improved knowledge of A. conyzoides is not only essential for developing sustainable weed control strategy but can also offer potential ways for biomedicinal, environment, safe and clean agriculture applications.


Asunto(s)
Ageratum/química , Begomovirus/patogenicidad , Extractos Vegetales/química , Ageratum/virología , Agricultura , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Metabolismo Secundario
2.
Phytochem Rev ; 21(3): 879-913, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34366748

RESUMEN

Ocimum species represent commercially important medicinal and aromatic plants. The essential oil biosynthesized by Ocimum species is enriched with specialized metabolites specifically, terpenoids and phenylpropanoids. Interestingly, various Ocimum species are known to exhibit diverse chemical profiles, and this chemical diversity has been at the center of many studies to identify commercially important chemotypes. Here, we present various chemotypes from the Ocimum species and emphasize trends, implications, and strategies for the quality and yield improvement of essential oil. Globally, many Ocimum species have been analyzed for their essential oil composition in over 50 countries. Asia represents the highest number of chemotypes, followed by Africa, South America, and Europe. Ocimum basilicum L. has been the most widespread and well-studied species, followed by O. gratissimum L., O. tenuiflorum L., O. canum Sims, O. americanum and O. kilimandscharicum Gürke. Moreover, various molecular reasons, benefits, adverse health effects and mechanisms behind this vast chemodiversity have been discussed. Different strategies of plant breeding, metabolic engineering, transgenic, and tissue-culture, along with anatomical modifications, are surveyed to enhance specific chemotypic profiles and essential oil yield in numerous Ocimum species. Consequently, chemical characterization of the essential oil obtained from Ocimum species has become indispensable for its proper utilization. The present chemodiversity knowledge from Ocimum species will help to exploit various applications in the industrial, agriculture, biopharmaceutical, and food sectors. Supplementary Information: The online version contains supplementary material available at 10.1007/s11101-021-09767-z.

3.
Planta ; 253(2): 61, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538903

RESUMEN

MAIN CONCLUSION: During the process of plant domestication, the selection and traditional breeding for desired characters such as flavor, juiciness and nutritional value of fruits, probably have resulted in gain or loss of specialized metabolites contributing to these traits. Their appearance in fruits is likely due to the acquisition of novel and specialized metabolic pathways and their regulation, driven by systematic molecular evolutionary events facilitated by traditional breeding. Plants change their armory of specialized metabolism to adapt and survive in diverse ecosystems. This may occur through molecular evolutionary events, such as single nucleotide polymorphism, gene duplication and transposition, leading to convergent or divergent evolution of biosynthetic pathways producing such specialized metabolites. Breeding and selection for improved specific and desired traits (fruit size, color, taste, flavor, etc.) in fruit crops through conventional breeding approaches may further alter content and profile of specialized metabolites. Biosynthetic routes of these metabolites have been studied in various plants. Here, we explore the influence of plant domestication and breeding processes on the selection of biosynthetic pathways of favorable specialized metabolites in fruit crops. An orderly clustered arrangement of genes associated with their production is observed in many fruit crops. We further analyzed selection-based acquisition of specialized metabolic pathways comparing first the metabolic profiles and genes involved in their biosynthesis, followed by the genomic organization of such genes between wild and domesticated horticultural crops. Domestication of crop plants favored the acquisition and retention of metabolic pathways that enhanced the fruit value while eliminated those which produced toxic or unfavorable metabolites. Interestingly, unintentional reorganization of complex metabolic pathways by selection and traditional breeding processes has endowed us with flavorful, juicy and nutritionally rich fruits.


Asunto(s)
Productos Agrícolas/metabolismo , Domesticación , Frutas , Redes y Vías Metabólicas , Fitomejoramiento , Productos Agrícolas/genética , Ecosistema , Frutas/genética , Frutas/metabolismo
4.
Mol Biotechnol ; 62(10): 508-520, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32844356

RESUMEN

Globally farmers have difficulty in extending the shelf-life of the tropical fruits due to their perishable nature. The present study aimed to assess the effect of hexanal nano-formulation treatment (NFT) on the shelf-life of Alphonso mango. Further, volatilomics was performed to explore the molecular basis of such effect. Untreated and treated fruits were sampled starting from 5th to 21st day after NFT at an interval of 4 days. Moderate changes in visual and digital colour parameters were evident from the intact and dissected fruits of NFT set compared to untreated fruits. Biochemical assays affirmed the phenotypic differences with significant changes in the colour imparting compounds like carotenoids and anthocyanins among them. Further, gas chromatography-mass spectrometry analysis revealed significant qualitative and quantitative variations in the different classes of compounds like lactones, furanones, esters, aldehydes and alcohols. Some of the key metabolites showed differential modulations among the NFT and untreated fruit sets indicating their potential role in various processes, which ultimately might have resulted in delayed ripening of the mango. Overall, this study has demonstrated the beneficial effect of hexanal and identified important metabolites with the enhanced shelf-life in Alphonso that could be useful for farmers and mango-based food/flavour industries.


Asunto(s)
Almacenamiento de Alimentos , Frutas/metabolismo , Mangifera/metabolismo , Metaboloma , Análisis por Conglomerados , Color , Nanotecnología , Fenotipo , Pigmentación , Análisis de Componente Principal , Espectrofotometría
5.
Planta ; 251(1): 28, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31802261

RESUMEN

MAIN CONCLUSION: Exploration with high-throughput transcriptomics and metabolomics of two varieties of Ceropegia bulbosa identifies candidate genes, crucial metabolites and a potential cerpegin biosynthetic pathway. Ceropegia bulbosa is an important medicinal plant, used in the treatment of various ailments including diarrhea, dysentery, and syphilis. This is primarily attributed to the presence of pharmaceutically active secondary metabolites, especially cerpegin. As this plant belongs to an endemic threatened category, genomic resources are not available hampering exploration on the molecular basis of cerpegin accumulation till now. Therefore, we undertook high-throughput metabolomic and transcriptomic analyses using different tissues from two varieties namely, C. bulbosa var. bulbosa and C. bulbosa var. lushii. Metabolomic analysis revealed spatial and differential accumulation of various metabolites. We chemically synthesized and characterized the cerpegin and its derivatives by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Importantly, these comparisons suggested the presence of cerpegin and 5-allyl cerpegin in all C. bulbosa tissues. Further, de novo transcriptome analysis indicated the presence of significant transcripts for secondary metabolic pathways through the Kyoto encyclopedia of genes and genomes database. Tissue-specific profiling of transcripts and metabolites showed a significant correlation, suggesting the intricate mechanism of cerpegin biosynthesis. The expression of potential candidate genes from the proposed cerpegin biosynthetic pathway was further validated by qRT-PCR and NanoString nCounter. Overall, our findings propose a potential route of cerpegin biosynthesis. Identified transcripts and metabolites have built a foundation as new molecular resources that could facilitate future research on biosynthesis, regulation, and engineering of cerpegin or other important metabolites in such non-model plants.


Asunto(s)
Apocynaceae/genética , Apocynaceae/metabolismo , Vías Biosintéticas/genética , Perfilación de la Expresión Génica , Metabolómica , Piridonas/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Metaboloma , Anotación de Secuencia Molecular , Especificidad de Órganos/genética , Análisis de Componente Principal , Piridonas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
BMC Plant Biol ; 19(1): 330, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337343

RESUMEN

BACKGROUND: Dioecy is an important sexual system wherein, male and female flowers are borne on separate unisexual plants. Knowledge of sex-related differences can enhance our understanding in molecular and developmental processes leading to unisexual flower development. Coccinia grandis is a dioecious species belonging to Cucurbitaceae, a family well-known for diverse sexual forms. Male and female plants have 22A + XY and 22A + XX chromosomes, respectively. Previously, we have reported a gynomonoecious form (22A + XX) of C. grandis bearing morphologically hermaphrodite flowers (GyM-H) and female flowers (GyM-F). Also, we have showed that foliar spray of AgNO3 on female plant induces morphologically hermaphrodite bud development (Ag-H) despite the absence of Y-chromosome. RESULTS: To identify sex-related differences, total proteomes from male, female, GyM-H and Ag-H flower buds at early and middle stages of development were analysed by label-free proteomics. Protein search against the cucumber protein sequences (Phytozome) as well as in silico translated C. grandis flower bud transcriptome database, resulted in the identification of 2426 and 3385 proteins (FDR ≤ 1%), respectively. The latter database was chosen for further analysis as it led to the detection of higher number of proteins. Identified proteins were annotated using BLAST2GO pipeline. SWATH-MS-based comparative abundance analysis between Female_Early_vs_Male_Early, Ag_Early_vs_Female_Early, GyM-H_Middle_vs_Male_Middle and Ag_Middle_vs_ Male_Middle led to the identification of 650, 1108, 905 and 805 differentially expressed proteins, respectively, at fold change ≥1.5 and P ≤ 0.05. Ethylene biosynthesis-related candidates as highlighted in protein interaction network were upregulated in female buds compared to male buds. AgNO3 treatment on female plant induced proteins related to pollen development in Ag-H buds. Additionally, a few proteins governing pollen germination and tube growth were highly enriched in male buds compared to Ag-H and GyM-H buds. CONCLUSION: Overall, current proteomic analysis provides insights in the identification of key proteins governing dioecy and unisexual flower development in cucurbitaceae, the second largest horticultural family in terms of economic importance. Also, our results suggest that the ethylene-mediated stamen inhibition might be conserved in dioecious C. grandis similar to its monoecious cucurbit relatives. Further, male-biased proteins associated with pollen germination and tube growth identified here can help in understanding pollen fertility.


Asunto(s)
Cucurbitaceae/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Diferenciación Sexual , Cromosomas de las Plantas/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/fisiología , Proteoma/fisiología
7.
Physiol Mol Biol Plants ; 25(1): 47-57, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30804629

RESUMEN

Ocimum species produces a varied mix of different metabolites that imparts immense medicinal properties. To explore this chemo-diversity, we initially carried out metabolite profiling of different tissues of five Ocimum species and identified the major terpenes. This analysis broadly classified these five Ocimum species into two distinct chemotypes namely, phenylpropanoid-rich and terpene-rich. In particular, ß-caryophyllene, myrcene, limonene, camphor, borneol and selinene were major terpenes present in these Ocimum species. Subsequently, transcriptomic analysis of pooled RNA samples from different tissues of Ocimum gratissimum, O. tenuiflorum and O. kilimandscharicum identified 38 unique transcripts of terpene synthase (TPS) gene family. Full-length gene cloning, followed by sequencing and phylogenetic analysis of three TPS transcripts were carried out along with their expression in various tissues. Terpenoid metabolite and expression profiling of candidate TPS genes in various tissues of Ocimum species revealed spatial variances. Further, putative TPS contig 19414 (TPS1) was selected to corroborate its role in terpene biosynthesis. Agrobacterium-mediated transient over-expression assay of TPS1 in the leaves of O. kilimandscharicum and subsequent metabolic and gene expression analyses indicated it as a cis-ß-terpineol synthase. Overall, present study provided deeper understanding of terpene diversity in Ocimum species and might help in the enhancement of their terpene content through advanced biotechnological approaches.

8.
Plant Biotechnol J ; 16(8): 1502-1513, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29377467

RESUMEN

Early blight (EB), caused by Alternaria solani, is a major threat to global tomato production. In comparison with cultivated tomato (Solanum lycopersicum), a wild relative, S. arcanum exhibits strong resistance against EB. However, molecular cascades operating during EB resistance in wild or cultivated tomato plants are largely obscure. Here, we provide novel insight into spatio-temporal molecular events in S. arcanum against A. solani. Transcriptome and co-expression analysis presented 33-WRKYs as promising candidates of which 12 SaWRKYs displayed differential expression patterns in resistant and susceptible accessions during EB disease progression. Among these, SaWRKY1 exhibited induced expression with significant modulation in xyloglucan endotrans hydrolase 5 (XTH5) and MYB2 expressions that correlated with the disease phenotypes. Electro-mobility shift assay confirmed physical interaction of recombinant SaWRKY1 to SaXTH5 and SaMYB2 promoters. Comparative WRKY1 promoter analysis between resistant and susceptible plants revealed the presence of crucial motifs for defence mechanism exclusively in resistant accession. Additionally, many defence-related genes displayed significant expression variations in both the accessions. Further, WRKY1 overexpressing transgenic plants exhibited higher levels of EB resistance while RNAi silencing lines had increased susceptibility to A. solani with altered expression of XTH5 and MYB2. Overall, these findings demonstrate the positive influence of WRKY1 in improving EB resistance in wild tomato and this could be further utilized as a potential target through genetic engineering to augment protection against A. solani in crop plants.


Asunto(s)
Alternaria/patogenicidad , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Solanum lycopersicum/microbiología , Solanum/microbiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
9.
Plant Mol Biol ; 95(4-5): 411-423, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28980117

RESUMEN

KEY MESSAGE: Exploration with high throughput leaf metabolomics along with functional genomics in wild tomato unreveal potential role of steroidal glyco-alkaloids and phenylpropanoids during early blight resistance. Alternaria solani severely affects tomato (Solanum lycopersicum L.) yield causing early blight (EB) disease in tropical environment. Wild relative, Solanum arcanum Peralta could be a potential source of EB resistance; however, its underlying molecular mechanism largely remains unexplored. Hence, non-targeted metabolomics was applied on resistant and susceptible S. arcanum accessions upon A. solani inoculation to unravel metabolic dynamics during different stages of disease progression. Total 2047 potential metabolite peaks (mass signals) were detected of which 681 and 684 metabolites revealed significant modulation and clear differentiation in resistant and susceptible accessions, respectively. Majority of the EB-triggered metabolic changes were active from steroidal glycol-alkaloid (SGA), lignin and flavonoid biosynthetic pathways. Further, biochemical and gene expression analyses of key enzymes from these pathways positively correlated with phenotypic variation in the S. arcanum accessions indicating their potential role in EB. Additionally, transcription factors regulating lignin biosynthesis were also up-regulated in resistant plants and electrophoretic mobility shift assay revealed sequence-specific binding of rSaWRKY1 with MYB20 promoter. Moreover, transcript accumulation of key genes from phenylpropanoid and SGA pathways along with WRKY and MYB in WRKY1 transgenic tomato lines supported above findings. Overall, this study highlights vital roles of SGAs as phytoalexins and phenylpropanoids along with lignin accumulation unrevealing possible mechanistic basis of EB resistance in wild tomato.


Asunto(s)
Alcaloides/metabolismo , Alternaria/fisiología , Regulación de la Expresión Génica de las Plantas , Metabolómica , Enfermedades de las Plantas/inmunología , Solanum/metabolismo , Alcaloides/química , Vías Biosintéticas , Resistencia a la Enfermedad , Flavonoides/metabolismo , Glicoles/química , Glicoles/metabolismo , Lignina/metabolismo , Fenotipo , Fitosteroles/química , Fitosteroles/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Saponinas/metabolismo , Metabolismo Secundario , Solanum/genética , Solanum/inmunología , Solanum/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Biochim Biophys Acta ; 1864(11): 1539-47, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27519164

RESUMEN

Isoprenoids and phenylpropanoids are the major secondary metabolite constituents in Ocimum genus. Though enzymes from phenylpropanoid pathway have been characterized from few plants, limited information exists on how they modulate levels of secondary metabolites. Here, we performed phenylpropanoid profiling in different tissues from five Ocimum species, which revealed significant variations in secondary metabolites including eugenol, eugenol methyl ether, estragole and methyl cinnamate levels. Expression analysis of eugenol synthase (EGS) gene showed higher transcript levels especially in young leaves and inflorescence; and were positively correlated with eugenol contents. Additionally, transcript levels of coniferyl alcohol acyl transferase, a key enzyme diverting pool of substrate to phenylpropanoids, were in accordance with their abundance in respective species. In particular, eugenol methyl transferase expression positively correlated with higher levels of eugenol methyl ether in Ocimum tenuiflorum. Further, EGSs were functionally characterized from four Ocimum species varying in their eugenol contents. Kinetic and expression analyses indicated, higher enzyme turnover and transcripts levels, in species accumulating more eugenol. Moreover, biochemical and bioinformatics studies demonstrated that coniferyl acetate was the preferred substrate over coumaryl acetate when used, individually or together, in the enzyme assay. Overall, this study revealed the preliminary evidence for varied accumulation of eugenol and its abundance over chavicol in these Ocimum species. Current findings could potentially provide novel insights for metabolic modulations in medicinal and aromatic plants.


Asunto(s)
Eugenol/metabolismo , Regulación de la Expresión Génica de las Plantas , Ocimum/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Compuestos Alílicos/aislamiento & purificación , Compuestos Alílicos/metabolismo , Derivados de Alilbenceno , Secuencia de Aminoácidos , Anisoles/aislamiento & purificación , Anisoles/metabolismo , Cinamatos/aislamiento & purificación , Cinamatos/metabolismo , Secuencia Conservada , Pruebas de Enzimas , Eugenol/análogos & derivados , Eugenol/aislamiento & purificación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ocimum/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Fenoles/aislamiento & purificación , Fenoles/metabolismo , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Aceites de Plantas/química , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metabolismo Secundario , Alineación de Secuencia , Especificidad por Sustrato
11.
J Hazard Mater ; 318: 742-750, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27498193

RESUMEN

The metalloid arsenic predominantly exists in the arsenite [As(III)] and arsenate [As(V)]. These two forms are respectively oxidized and reduced by microbial redox processes. This study was designed to bioprospect arsenic tolerating bacteria from Lonar lake and to characterize their arsenic redoxing ability. Screening of sixty-nine bacterial species isolated from Lonar lake led to identification of three arsenic-oxidizing and seven arsenic-reducing species. Arsenite oxidizing isolate Roseomonas sp. L-159a being closely related to Roseomonas cervicalis ATCC 49957 oxidized 2mM As(III) in 60h. Gene expression of large and small subunits of arsenite oxidase respectively showed 15- and 17-fold higher expression. Another isolate Nocardioides sp. L-37a formed a clade with Nocardioides ghangwensis JC2055, exhibited normal growth with different carbon sources and pH ranges. It reduced 2mM As(V) in 36h and showed constitutive expression of arsenate reductase which increased over 4-fold upon As(V) exposure. Genetic markers related to arsenic transformation were identified and characterized from the two isolates. Moderate resistance against the arsenicals was exhibited by the two isolates in the range of 1-5mM for As(III) and 1-200mM for As(V). Altogether we provide multiple evidences to indicate that Roseomonas sp. and Nocardioides sp. exhibited arsenic transformation ability.


Asunto(s)
Actinomycetales/metabolismo , Arsénico/metabolismo , Methylobacteriaceae/metabolismo , Actinomycetales/genética , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Arsénico/química , Arsénico/toxicidad , Arsenitos/metabolismo , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica/genética , Lagos , Methylobacteriaceae/genética , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Contaminantes del Suelo/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
12.
Biochem Biophys Res Commun ; 473(1): 265-271, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27005818

RESUMEN

The genus Ocimum has a unique blend of diverse secondary metabolites, with major proportion of terpenoids including mono- and sesquiterpenes. Although, ß-Caryophyllene, bicyclic sesquiterpene, is one of the major terpene found in Ocimum species and known to possess several biological activities, not much is known about its biosynthesis in Ocimum. Here, we describe isolation and characterization of ß-caryophyllene synthase gene from Ocimum kilimandscharicum Gürke (OkBCS- GenBank accession no. KP226502). The open reading frame of 1629 bp encoded a protein of 542 amino acids with molecular mass of 63.6 kDa and pI value of 5.66. The deduced amino acid sequence revealed 50-70% similarity with known sesquiterpene synthases from angiosperms. Recombinant OkBCS converted farnesyl diphosphate to ß-caryophyllene as a major product (94%) and 6% α-humulene. Expression variation of OkBCS well corroborated with ß-caryophyllene levels in different tissues from five Ocimum species. OkBCS transcript revealed higher expression in leaves and flowers. Further, agro-infiltration based transient expression manipulation with OkBCS over-expression and silencing confirmed its role in ß-caryophyllene biosynthesis. These findings may potentially be further utilized to improve plant defense against insect pests.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Ocimum/enzimología , Proteínas de Plantas/metabolismo , Sesquiterpenos/química , Agrobacterium/metabolismo , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica , Silenciador del Gen , Magnoliopsida/metabolismo , Datos de Secuencia Molecular , Sesquiterpenos Monocíclicos , Ocimum/genética , Sistemas de Lectura Abierta , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Sesquiterpenos Policíclicos , Fosfatos de Poliisoprenilo/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
13.
Plant Biotechnol J ; 14(7): 1589-603, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26801007

RESUMEN

Molecular changes elicited by plants in response to fungal attack and how this affects plant-pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp. ciceri (Foc), using quantitative label-free proteomics and NMR-based metabolomics. Results demonstrated differential expression of proteins and metabolites upon Foc inoculations in the resistant plants compared with the susceptible ones. Additionally, expression analysis of candidate genes supported the proteomic and metabolic variations in the chickpea roots upon Foc inoculation. In particular, we found that the resistant plants revealed significant increase in the carbon and nitrogen metabolism; generation of reactive oxygen species (ROS), lignification and phytoalexins. The levels of some of the pathogenesis-related proteins were significantly higher upon Foc inoculation in the resistant plant. Interestingly, results also exhibited the crucial role of altered Yang cycle, which contributed in different methylation reactions and unfolded protein response in the chickpea roots against Foc. Overall, the observed modulations in the metabolic flux as outcome of several orchestrated molecular events are determinant of plant's role in chickpea-Foc interactions.


Asunto(s)
Cicer/microbiología , Fusarium/fisiología , Metabolómica , Proteómica , Cicer/genética , Cicer/metabolismo , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno/genética , Lignina/metabolismo , Redes y Vías Metabólicas , Resonancia Magnética Nuclear Biomolecular , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos/metabolismo , Fitoalexinas
14.
PLoS One ; 10(11): e0142965, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26569490

RESUMEN

DNA barcoding enables precise identification of species from analysis of unique DNA sequence of a target gene. The present study was undertaken to develop barcodes for different species of the genus Dalbergia, an economically important timber plant and is widely distributed in the tropics. Ten Dalbergia species selected from the Western Ghats of India were evaluated using three regions in the plastid genome (matK, rbcL, trnH-psbA), a nuclear transcribed spacer (nrITS) and their combinations, in order to discriminate them at species level. Five criteria: (i) inter and intraspecific distances, (ii) Neighbor Joining (NJ) trees, (iii) Best Match (BM) and Best Close Match (BCM), (iv) character based rank test and (v) Wilcoxon signed rank test were used for species discrimination. Among the evaluated loci, rbcL had the highest success rate for amplification and sequencing (97.6%), followed by matK (97.0%), trnH-psbA (94.7%) and nrITS (80.5%). The inter and intraspecific distances, along with Wilcoxon signed rank test, indicated a higher divergence for nrITS. The BM and BCM approaches revealed the highest rate of correct species identification (100%) with matK, matK+rbcL and matK+trnH-psb loci. These three loci, along with nrITS, were further supported by character based identification method. Considering the overall performance of these loci and their ranking with different approaches, we suggest matK and matK+rbcL as the most suitable barcodes to unambiguously differentiate Dalbergia species. These findings will potentially be helpful in delineating the various species of Dalbergia genus, as well as other related genera.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Dalbergia/clasificación , ADN de Plantas/genética , Dalbergia/genética , Sitios Genéticos , Variación Genética , Geografía , India , Datos de Secuencia Molecular , Nucleótidos/genética , Especificidad de la Especie
15.
OMICS ; 19(7): 372-82, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26134253

RESUMEN

Agriproteomics signifies the merging of agriculture research and proteomics systems science and is impacting plant research and societal development. Wheat is a frequently consumed foodstuff, has highly variable grain size that in effect contributes to wheat grain yield and the end-product quality. Very limited information is available on molecular basis of grain size due to complex multifactorial nature of this trait. Here, using liquid chromatography-mass spectrometry, we investigated the proteomics profiles from grains of wheat genotypes, Rye selection 111 (RS111) and Chinese spring (CS), which differ in their size. Significant differences in protein expression were found, including 33 proteins uniquely present in RS111 and 32 only in CS, while 54 proteins were expressed from both genotypes. Among differentially expressed proteins, 22 were upregulated, while 21 proteins were downregulated in RS111 compared to CS. Functional classification revealed their role in energy metabolism, seed storage, stress tolerance and transcription. Further, protein interactive network analysis was performed to predict the targets of identified proteins. Significantly different interactions patterns were observed between these genotypes with detection of proteins such as Cyp450, Sus2, and WRKY that could potentially affect seed size. The present study illustrates the potentials of agriproteomics as a veritable new frontier of plant omics research.


Asunto(s)
Agricultura/tendencias , Grano Comestible/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Cromatografía Liquida , Grano Comestible/anatomía & histología , Grano Comestible/genética , Perfilación de la Expresión Génica , Genotipo , Espectrometría de Masas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mapas de Interacción de Proteínas , Proteómica , Triticum/anatomía & histología , Triticum/genética
16.
Phytochemistry ; 116: 120-129, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25935544

RESUMEN

Chickpea is the third most widely grown legume in the world and mainly used as a vegetarian source of human dietary protein. Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceri (Foc), is one of the major threats to global chickpea production. Host resistance is the best way to protect crops from diseases; however, in spite of using various approaches, the mechanism of Foc resistance in chickpea remains largely obscure. In the present study, non-targeted metabolic profiling at several time points of resistant and susceptible chickpea cultivars using high-resolution liquid chromatography-mass spectrometry was applied to better understand the mechanistic basis of wilt resistance or susceptibility. Multivariate analysis of the data (OPLS-DA) revealed discriminating metabolites in chickpea root tissue after Foc inoculation such as flavonoids, isoflavonoids, alkaloids, amino acids and sugars. Foc inoculated resistant plants had more flavonoids and isoflavonoids along with their malonyl conjugates. Many antifungal metabolites that were induced after Foc infection viz., aurantion-obstine ß-glucosides and querecitin were elevated in resistant cultivar. Overall, diverse genetic and biochemical mechanisms were operational in the resistant cultivar for Foc defense as compared to the susceptible plant. The resistant chickpea plants employed the above-mentioned metabolic pathways as potential defense strategy against Foc.


Asunto(s)
Cicer/metabolismo , Fusarium/metabolismo , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno , Raíces de Plantas/genética
17.
J Proteome Res ; 12(11): 4727-37, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24090158

RESUMEN

Insect pests remain a major reason for crop loss worldwide despite extensive use of chemical insecticides. More than 50% of all insecticides are organophosphates, followed by synthetic pyrethroids, organochlorines, carbamates, and biopesticides, and their continued use may have many environmental, agricultural, medical, and socioeconomic issues. Importantly, only a countable number of insects have acquired the status of crop pests, mostly due to monoculture of crop plants and polyphagous nature of the insects. We focus on adaptations of Lepidopteran insects to phytochemicals and synthetic pesticides in native and modern agricultural systems. Because of heavy use of chemical insecticides, a strong selection pressure is imposed on insect populations, resulting in the emergence of resistance against candidate compound(s). Current knowledge suggests that insects generally implement a three-tier system to overcome the effect of toxic compounds at physiological, biochemical, and genetic levels. Furthermore, we have discussed whether the adaptation to phytochemicals provides an advantage to the insect while encountering synthetic insecticide molecules. Specific metabolic pathways employed by insects to convert deterrents into less toxic forms or their removal from the system are highlighted. Using the proteomics approach, insect proteins interacting with insecticides can be identified, and their modification in resistant insects can be characterized. Also, systems biology studies can offer useful cues to decipher the molecular networks participating in the metabolism of detrimental compounds.


Asunto(s)
Adaptación Biológica/genética , Resistencia a los Insecticidas/genética , Lepidópteros/genética , Redes y Vías Metabólicas/genética , Modelos Biológicos , Proteómica/métodos , Selección Genética , Animales , Lepidópteros/metabolismo , Fitoquímicos , Biología de Sistemas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...