Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(43): 26651-26659, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046643

RESUMEN

The 1257 CE eruption of Mount Samalas (Indonesia) is the source of the largest stratospheric injection of volcanic gases in the Common Era. Sulfur dioxide emissions produced sulfate aerosols that cooled Earth's climate with a range of impacts on society. The coemission of halogenated species has also been speculated to have led to wide-scale ozone depletion. Here we present simulations from HadGEM3-ES, a fully coupled Earth system model, with interactive atmospheric chemistry and a microphysical treatment of sulfate aerosol, used to assess the chemical and climate impacts from the injection of sulfur and halogen species into the stratosphere as a result of the Mt. Samalas eruption. While our model simulations support a surface air temperature response to the eruption of the order of -1°C, performing well against multiple reconstructions of surface temperature from tree-ring records, we find little evidence to support significant injections of halogens into the stratosphere. Including modest fractions of the halogen emissions reported from Mt. Samalas leads to significant impacts on the composition of the atmosphere and on surface temperature. As little as 20% of the halogen inventory from Mt. Samalas reaching the stratosphere would result in catastrophic ozone depletion, extending the surface cooling caused by the eruption. However, based on available proxy records of surface temperature changes, our model results support only very minor fractions (1%) of the halogen inventory reaching the stratosphere and suggest that further constraints are needed to fully resolve the issue.

2.
Atmos Chem Phys Discuss ; 19(15): 10087-10110, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632450

RESUMEN

We have derived values of the Ultraviolet Index (UVI) at solar noon using the Tropospheric Ultraviolet Model (TUV) driven by ozone, temperature and aerosol fields from climate simulations of the first phase of the Chemistry-Climate Model Initiative (CCMI-1). Since clouds remain one of the largest uncertainties in climate projections, we simulated only the clear-sky UVI. We compared the modelled UVI climatologies against present-day climatological values of UVI derived from both satellite data (the OMI-Aura OMUVBd product) and ground-based measurements (from the NDACC network). Depending on the region, relative differences between the UVI obtained from CCMI/TUV calculations and the ground-based measurements ranged between -5.9% and 10.6%. We then calculated the UVI evolution throughout the 21st century for the four Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0 and 8.5). Compared to 1960s values, we found an average increase in the UVI in 2100 (of 2-4%) in the tropical belt (30°N-30°S). For the mid-latitudes, we observed a 1.8 to 3.4 % increase in the Southern Hemisphere for RCP 2.6, 4.5 and 6.0, and found a 2.3% decrease in RCP 8.5. Higher increases in UVI are projected in the Northern Hemisphere except for RCP 8.5. At high latitudes, ozone recovery is well identified and induces a complete return of mean UVI levels to 1960 values for RCP 8.5 in the Southern Hemisphere. In the Northern Hemisphere, UVI levels in 2100 are higher by 0.5 to 5.5% for RCP 2.6, 4.5 and 6.0 and they are lower by 7.9% for RCP 8.5. We analysed the impacts of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) on UVI from 1960 by comparing CCMI sensitivity simulations (1960-2100) with fixed GHGs or ODSs at their respective 1960 levels. As expected with ODS fixed at their 1960 levels, there is no large decrease in ozone levels and consequently no sudden increase in UVI levels. With fixed GHG, we observed a delayed return of ozone to 1960 values, with a corresponding pattern of change observed on UVI, and looking at the UVI difference between 2090s values and 1960s values, we found an 8 % increase in the tropical belt during the summer of each hemisphere. Finally we show that, while in the Southern Hemisphere the UVI is mainly driven by total ozone column, in the Northern Hemisphere both total ozone column and aerosol optical depth drive UVI levels, with aerosol optical depth having twice as much influence on the UVI as total ozone column does.

3.
J Geophys Res Atmos ; 124(4): 2318-2335, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30984484

RESUMEN

Very short-lived substances (VSLS), including dichloromethane (CH2Cl2), chloroform (CHCl3), perchloroethylene (C2Cl4), and 1,2-dichloroethane (C2H4Cl2), are a stratospheric chlorine source and therefore contribute to ozone depletion. We quantify stratospheric chlorine trends from these VSLS (VSLCltot) using a chemical transport model and atmospheric measurements, including novel high-altitude aircraft data from the NASA VIRGAS (2015) and POSIDON (2016) missions. We estimate VSLCltot increased from 69 (±14) parts per trillion (ppt) Cl in 2000 to 111 (±22) ppt Cl in 2017, with >80% delivered to the stratosphere through source gas injection, and the remainder from product gases. The modeled evolution of chlorine source gas injection agrees well with historical aircraft data, which corroborate reported surface CH2Cl2 increases since the mid-2000s. The relative contribution of VSLS to total stratospheric chlorine increased from ~2% in 2000 to ~3.4% in 2017, reflecting both VSLS growth and decreases in long-lived halocarbons. We derive a mean VSLCltot growth rate of 3.8 (±0.3) ppt Cl/year between 2004 and 2017, though year-to-year growth rates are variable and were small or negative in the period 2015-2017. Whether this is a transient effect, or longer-term stabilization, requires monitoring. In the upper stratosphere, the modeled rate of HCl decline (2004-2017) is -5.2% per decade with VSLS included, in good agreement to ACE satellite data (-4.8% per decade), and 15% slower than a model simulation without VSLS. Thus, VSLS have offset a portion of stratospheric chlorine reductions since the mid-2000s.

4.
Nat Commun ; 9(1): 206, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335470

RESUMEN

The Montreal Protocol has succeeded in limiting major ozone-depleting substance emissions, and consequently stratospheric ozone concentrations are expected to recover this century. However, there is a large uncertainty in the rate of regional ozone recovery in the Northern Hemisphere. Here we identify a Eurasia-North America dipole mode in the total column ozone over the Northern Hemisphere, showing negative and positive total column ozone anomaly centres over Eurasia and North America, respectively. The positive trend of this mode explains an enhanced total column ozone decline over the Eurasian continent in the past three decades, which is closely related to the polar vortex shift towards Eurasia. Multiple chemistry-climate-model simulations indicate that the positive Eurasia-North America dipole trend in late winter is likely to continue in the near future. Our findings suggest that the anticipated ozone recovery in late winter will be sensitive not only to the ozone-depleting substance decline but also to the polar vortex changes, and could be substantially delayed in some regions of the Northern Hemisphere extratropics.

5.
Geophys Res Lett ; 45(18): 9919-9933, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32742043

RESUMEN

Simulated stratospheric temperatures over the period 1979-2016 in models from the Chemistry-Climate Model Initiative (CCMI) are compared with recently updated and extended satellite observations. The multi-model mean global temperature trends over 1979- 2005 are -0.88 ± 0.23, -0.70 ± 0.16, and -0.50 ± 0.12 K decade-1 for the Stratospheric Sounding Unit (SSU) channels 3 (~40-50 km), 2 (~35-45 km), and 1 (~25-35 km), respectively. These are within the uncertainty bounds of the observed temperature trends from two reprocessed satellite datasets. In the lower stratosphere, the multi-model mean trend in global temperature for the Microwave Sounding Unit channel 4 (~13-22 km) is -0.25 ± 0.12 K decade-1 over 1979-2005, consistent with estimates from three versions of this satellite record. The simulated stratospheric temperature trends in CCMI models over 1979-2005 agree with the previous generation of chemistry-climate models. The models and an extended satellite dataset of SSU with the Advanced Microwave Sounding Unit-A show weaker global stratospheric cooling over 1998-2016 compared to the period of intensive ozone depletion (1979-1997). This is due to the reduction in ozone-induced cooling from the slow-down of ozone trends and the onset of ozone recovery since the late 1990s. In summary, the results show much better consistency between simulated and satellite observed stratospheric temperature trends than was reported by Thompson et al. (2012) for the previous versions of the SSU record and chemistry-climate models. The improved agreement mainly comes from updates to the satellite records; the range of simulated trends is comparable to the previous generation of models.

7.
Nature ; 549(7671): 211-218, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28905899

RESUMEN

As a result of the 1987 Montreal Protocol and its amendments, the atmospheric loading of anthropogenic ozone-depleting substances is decreasing. Accordingly, the stratospheric ozone layer is expected to recover. However, short data records and atmospheric variability confound the search for early signs of recovery, and climate change is masking ozone recovery from ozone-depleting substances in some regions and will increasingly affect the extent of recovery. Here we discuss the nature and timescales of ozone recovery, and explore the extent to which it can be currently detected in different atmospheric regions.

8.
Nat Commun ; 8: 15962, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28654085

RESUMEN

It is well established that anthropogenic chlorine-containing chemicals contribute to ozone layer depletion. The successful implementation of the Montreal Protocol has led to reductions in the atmospheric concentration of many ozone-depleting gases, such as chlorofluorocarbons. As a consequence, stratospheric chlorine levels are declining and ozone is projected to return to levels observed pre-1980 later this century. However, recent observations show the atmospheric concentration of dichloromethane-an ozone-depleting gas not controlled by the Montreal Protocol-is increasing rapidly. Using atmospheric model simulations, we show that although currently modest, the impact of dichloromethane on ozone has increased markedly in recent years and if these increases continue into the future, the return of Antarctic ozone to pre-1980 levels could be substantially delayed. Sustained growth in dichloromethane would therefore offset some of the gains achieved by the Montreal Protocol, further delaying recovery of Earth's ozone layer.

9.
Nature ; 546(7659): 485-491, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28640263

RESUMEN

Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.

10.
J Geophys Res Atmos ; 122(21): 11914-11933, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38515436

RESUMEN

An accurate estimate of global hydroxyl radical (OH) abundance is important for projections of air quality, climate, and stratospheric ozone recovery. As the atmospheric mixing ratios of methyl chloroform (CH3CCl3) (MCF), the commonly used OH reference gas, approaches zero, it is important to find alternative approaches to infer atmospheric OH abundance and variability. The lack of global bottom-up emission inventories is the primary obstacle in choosing a MCF alternative. We illustrate that global emissions of long-lived trace gases can be inferred from their observed mixing ratio differences between the Northern Hemisphere (NH) and Southern Hemisphere (SH), given realistic estimates of their NH-SH exchange time, the emission partitioning between the two hemispheres, and the NH versus SH OH abundance ratio. Using the observed long-term trend and emissions derived from the measured hemispheric gradient, the combination of HFC-32 (CH2F2), HFC-134a (CH2FCF3, HFC-152a (CH3CHF2), and HCFC-22 (CHClF2), instead of a single gas, will be useful as a MCF alternative to infer global and hemispheric OH abundance and trace gas lifetimes. The primary assumption on which this multispecies approach relies is that the OH lifetimes can be estimated by scaling the thermal reaction rates of a reference gas at 272 K on global and hemispheric scales. Thus, the derived hemispheric and global OH estimates are forced to reconcile the observed trends and gradient for all four compounds simultaneously. However, currently, observations of these gases from the surface networks do not provide more accurate OH abundance estimate than that from MCF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...