Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Mar Pollut Bull ; 203: 116495, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759465

RESUMEN

Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems.

2.
J Clin Med ; 13(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673478

RESUMEN

Background: Dual disorders (DD) entail the coexistence of a substance use disorder (SUD) and another mental health condition, often within psychotic and affective disorders. This study aims to evaluate lurasidone, an innovative atypical antipsychotic, in individuals diagnosed with schizophrenia spectrum disorder and concurrent comorbidities of alcohol use disorder/substance use disorder (AUD/SUD). Methods: A cohort of 23 subjects diagnosed with schizophrenia spectrum disorder and comorbid AUD/SUD underwent psychometric assessments at baseline (T0) and one-month (T1) post-lurasidone initiation. Results: Lurasidone exhibited significant reductions in psychopathological burden, evidenced by decreased total PANSS scores (Z = 2.574, p = 0.011). Positive symptoms, substance craving (VAS Craving; Z = 3.202, p = 0.001), and aggressivity (MOAS scale; Z = 2.000, p = 0.050) were notably reduced. Clinical Global Impression (CGI) scores significantly improved (Z = 2.934, p = 0.003). Quality of life enhancements were observed in SF-36 subscales (energy, emotional well-being, and social functioning) (p < 0.05) and Q-LES-Q-SF scale (Z = -2.341, p = 0.021). A safety analysis indicated lurasidone's good tolerability, with only 8.7% reporting discontinuation due to side effects. Conclusions: This study offers initial evidence supporting lurasidone's efficacy and safety in dual diagnoses, highlighting positive effects on psychopathology, substance craving, and quality of life. These findings emphasize the need for tailored, comprehensive treatment strategies in managing the complexities of this patient population.

3.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38389242

RESUMEN

Antibiotic resistance genes (ARGs) are abundant in aquatic ecosystems affected by human activities. Understanding the fate of ARGs across different ecosystems is essential because of the significant role aquatic environments play in the cycle of antibiotic resistance. We quantified selected ARGs in Lake Maggiore, its main tributaries, and the effluent of the main wastewater treatment plant (WWTP) discharging directly into the lake. We linked their dynamics to the different anthropogenic impacts in each tributary's watershed. The dynamics of tetA in the lake were influenced by those of the rivers and the WWTP effluent, and by the concentration of N-NH4, related to anthropogenic pollution, while sul2 abundance in the lake was not influenced by any water inflow. The dynamics of the different ARGs varied across the different rivers. Rivers with watersheds characterized by high population density, touristic activities, and secondary industries released more ARGs, while ermB correlated with higher numbers of primary industries. This study suggests a limited contribution of treated wastewater in the spread of ARGs, indicating as prevalent origin other sources of pollution, calling for a reconsideration on what are considered the major sources of ARGs into the environment.


Asunto(s)
Antibacterianos , Genes Bacterianos , Humanos , Antibacterianos/farmacología , Antibacterianos/análisis , Lagos , Ecosistema , Farmacorresistencia Microbiana/genética , Ríos
4.
Environ Pollut ; 345: 123427, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38286262

RESUMEN

The escalating presence of antibiotic-resistant bacteria (ARB) in aquatic ecosystems underscores the critical role of wastewater treatment plants (WWTPs) in mitigating antibiotic resistance. Disinfection is the final, pivotal step in WWTPs, and it is essential to control the dissemination of ARB before water discharge. This study utilized both phenotypic analysis and transcriptome (RNA-seq) approach to investigate the efficiency and mechanisms of disinfection using chlorination, ultraviolet (UV), and peracetic acid (PAA) on multidrug-resistant bacteria (MRB). Our results demonstrated that the use of 100 mg min L-1 of chlorine, 8.19 mJ cm-2 of UV irradiation or 50 min mg L-1 of PAA significantly reduced the abundance of MRB. Intriguingly, RNA-seq clarified distinct mechanisms of chlorination and UV disinfection. UV radiation triggered the SOS response to cope with DNA damage, induced the expression of multi-drug resistance genes by increasing the expression of efflux pump transporters. UV radiation also promoted the absorption of iron through chelation and transportation to participate in various cell life processes. Chlorination, on the other hand, significantly up-regulated osmotic response elements, including the synthesis of glycine betaine, iron-sulfur clusters, and related transporters. Both chlorination and UV significantly down-regulated key metabolic pathways (P < 0.05), inhibiting the process of amino acid synthesis and energy metabolism. Imbalance in energy homeostasis was the most important factor leading to cytotoxicity. These results provide useful insights into optimizing the wastewater disinfection process in order to prevent the dissemination of ARB in aquatic environment.


Asunto(s)
Aguas Residuales , Purificación del Agua , Desinfección/métodos , Ecosistema , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Ácido Peracético , Rayos Ultravioleta , Bacterias , Hierro , Purificación del Agua/métodos , Antibacterianos/farmacología
5.
Environ Pollut ; 342: 123065, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043766

RESUMEN

The presence of antimicrobial resistance genes (ARGs) in the microbiome of freshwater communities is a consequence of thousands of years of evolution but also of the pressure exerted by anthropogenic activities, with potential negative impact on environmental and human health. In this study, we investigated the distribution of ARGs in Lake Tanganyika (LT)'s water column to define the resistome of this ancient lake. Additionally, we compared the resistome of LT with that of Lake Baikal (LB), the oldest known lake with different environmental characteristics and a lower anthropogenic pollution than LT. We found that richness and abundance of several antimicrobial resistance classes were higher in the deep water layers in both lakes. LT Kigoma region, known for its higher anthropogenic pollution, showed a greater richness and number of ARG positive MAGs compared to Mahale. Our results provide a comprehensive understanding of the antimicrobial resistome of LT and underscore its importance as reservoir of antimicrobial resistance. In particular, the deepest water layers of LT are the main repository of diverse ARGs, mirroring what was observed in LB and in other aquatic ecosystems. These findings suggest that the deep waters might play a crucial role in the preservation of ARGs in aquatic ecosystems.


Asunto(s)
Antiinfecciosos , Microbiota , Humanos , Lagos , Agua , Tanzanía , Genes Bacterianos , Antibacterianos
6.
J Hazard Mater ; 465: 133166, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101010

RESUMEN

Microplastic particles are persistent micropollutants that provide a substrate for the growth of bacterial biofilms, posing a threat to the environment. This study explores the changes in commercially available food containers made of conventional (polypropylene PP, polyethylene terephthalate PET), innovative biodegradable (Mater-Bi) and natural (wood and cellulose) materials, when introduced in the surface waters of Lake Maggiore for 43 days. Spectral changes revealed by FT-IR spectroscopy in PET and Mater-Bi, and changes in thermal properties of all human-made material tested indicated a degradation process occurred during environmental exposure. Despite similar bacterial richness, biofilms on PET, PP, and Mater-Bi differed from natural material biofilms and the planktonic community. Human-made material communities showed a higher proportion of potential pathogens, with PET and PP also exhibiting increased abundances of antibiotic resistance genes. Overall, these findings stress the need for dedicated strategies to curb the spread of human-made polymers in freshwaters, including innovative materials that, due to their biodegradable properties, might be perceived less hazardous for the environment.


Asunto(s)
Plásticos Biodegradables , Humanos , Plásticos , Plancton , Espectroscopía Infrarroja por Transformada de Fourier , Polipropilenos , Microplásticos , Bacterias
7.
Microbiol Spectr ; : e0110123, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37724865

RESUMEN

Bacteriophages are known as players in the transmission of antimicrobial resistance genes (ARGs) by horizontal gene transfer. In this study, we characterized the bacteriophage community and the associated ARGs to estimate the potential for phages to spread ARGs in aquatic ecosystems analyzing the intra- and extracellular DNA isolated from two wastewater treatment plants (WWTPs) by shotgun metagenomics. We compared the phage antimicrobial resistome with the bacterial resistome and investigated the effect of the final disinfection treatment on the phage community and its resistome. Phage community was mainly composed by Siphoviridae and other members of the order Caudovirales. The final disinfection only marginally affected the composition of the phage community, and it was not possible to measure its effect on the antimicrobial resistome. Indeed, only three phage metagenome-assembled genomes (pMAGs) annotated as Siphoviridae, Padoviridae, and Myoviridae were positive for putative ARGs. Among the detected ARGs, i.e., dfrB6, rpoB mutants, and EF-Tu mutants, the first one was not annotated in the bacterial MAGs. Overall, these results demonstrate that bacteriophages limitedly contribute to the whole antimicrobial resistome. However, in order to obtain a comprehensive understanding of the antimicrobial resistome within a microbial community, the role of bacteriophages needs to be investigated. IMPORTANCE WWTPs are considered hotspots for the spread of ARGs by horizontal gene transfer. In this study, we evaluated the phage composition and the associated antimicrobial resistome by shotgun metagenomics of samples collected before and after the final disinfection treatment. Only a few bacteriophages carried ARGs. However, since one of the detected genes was not found in the bacterial metagenome-assembled genomes, it is necessary to investigate the phage community in order to gain a comprehensive overview of the antimicrobial resistome. This investigation could help assess the potential threats to human health.

8.
Chemosphere ; 331: 138800, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37121282

RESUMEN

Aquatic ecosystems in anthropogenically impacted areas are important reservoirs of antibiotic resistance genes (ARGs) of allochthonous origin. However, the dynamics of the different ARGs within the bacterial communities of lakes and rivers, as well as the factors that drive their selection, are not completely understood. In this study, we analysed the fate of the bacterial resistome (total content of ARGs and of metal resistance genes, MRGs) for a period of six months (summer-winter) in a continuum lake-river-lake system (Lake Varese, River Bardello, Lake Maggiore) in Northern Italy, by shotgun metagenomics. The metagenomic data were then compared with chemical, physical and microbiological data, to infer the role of anthropogenic pressure in the different sampling stations. ARGs and MRGs were more abundant and diverse in the River Bardello, characterised by the highest anthropogenic pollution. The date of sampling influenced ARGs and MRGs, with higher abundances in summer (August) than in fall or in winter, when the impact of the treated wastewater discharge in the river was limited by a higher water flow from Lake Varese. ARG and MRG abundances were significantly correlated and they co-occurred in the main network analysis modules with potential pathogenic bacteria. Different levels of anthropogenic impact selectively promoted specific ARGs while others, generally abundant in waters, were not affected by anthropogenic pressure. Reducing the level of anthropogenic pressure resulted in a rapid decrease of most ARGs. From our results, the role of anthropogenic pressure in promoting the spread of specific antibiotic resistances and of potential pathogens in aquatic ecosystem becomes clear. Finally we highlight the strict correlation between ARGs and MRGs suggesting their potential co-selection in stressed aquatic bacterial communities.


Asunto(s)
Ecosistema , Genes Bacterianos , Bacterias/genética , Farmacorresistencia Microbiana/genética , Lagos/microbiología , Ríos/microbiología , Antibacterianos/farmacología
9.
Mar Pollut Bull ; 188: 114685, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36739716

RESUMEN

The Great Barrier Reef (GBR) is the world's largest coral ecosystem and is threatened by climate change. This study investigated the impact of the 2016 Marine Heatwave (MHW) on plankton associated microbial communities along a ∼800 km transect in the GBR. 16S rRNA gene metabarcoding of archived plankton samples collected from November 2014 to August 2016 in this region showed a significant increase in Planctomycetes and bacteria belonging to the genus Vibrio and Synechococcus during and after the heatwave. Notably, Droplet Digital PCR and targeted metagenomic analysis applied on samples collected four months after the MHW event revealed the presence of several potential pathogenic Vibrio species previously associated with diseases in aquatic animals. Overall, the 2016 MHW significantly impacted the surface picoplankton community and fostered the spread of potentially pathogenic bacteria across the GBR providing an additional threat for marine biodiversity in this area.


Asunto(s)
Antozoos , Microbiota , Animales , Ecosistema , Arrecifes de Coral , Plancton , ARN Ribosómico 16S , Australia , Bacterias/genética
10.
Environ Pollut ; 323: 121325, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36828358

RESUMEN

Wastewater treatment plants are among the main hotspots for the release of antibiotic resistance genes (ARGs) into the environment. ARGs in treated wastewater can be found in the intracellular DNA (iDNA) and in the extracellular DNA (eDNA). In this study, we investigated the fate and the distribution (either in eDNA or in iDNA) of ARGs in the treated wastewaters pre and post-disinfection by shotgun metagenomics. The richness of the intracellular resistome was found to be higher than the extracellular one. However, the latter included different high risk ARGs. About 11% of the recovered metagenome assembled genomes (MAGs) from the extracted DNA was positive for at least one ARG and, among them, several were positive for more ARGs. The high-risk ARG bacA was the most frequently detected gene among the MAGs. The disinfection demonstrated to be an important driver of the composition of the antibiotic resistomes. Our results demonstrated that eDNA represents an important fraction of the overall ARGs, including a number of high-risk ARGs, which reach the environment with treated wastewater effluents. The studied disinfections only marginally affect the whole antibiotic resistome but cause important shifts from intracellular to extracellular DNA, potentially threating human health.


Asunto(s)
Antibacterianos , Aguas Residuales , Humanos , Antibacterianos/farmacología , Genes Bacterianos , ADN , Farmacorresistencia Microbiana/genética
11.
Environ Sci Pollut Res Int ; 30(12): 35294-35306, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36527555

RESUMEN

This study investigates the antibiotic resistance fate in the urban water cycle, evaluating the dynamics of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in three different full-scale wastewater treatment plants (WWTPs) and two drinking water treatment plants (DWTPs) located in the same geographical area (North-West of Italy). ARB (tetracycline-, ampicillin-, and sulfonamide-resistant bacteria) were quantified by plate counting and the abundances of selected ARGs (i.e., tetA, blaTEM, and sulII) and intI1 gene were measured using quantitative real-time PCR (qPCR). Higher concentrations of ARB and ARGs were observed in the WWTPs with respect to the DWTPs identifying the WWTP as hotspot for the spread of antibiotic resistances. Although a significant reduction of ARB and ARGs was observed in WWTPs and DWTPs after the treatment, none of the detected ARB or ARGs was completely removed in drinking water. The stability of the antibiotic-resistant rates between inlet and outlet associated with the reduction of relative ARG abundances underlined that both the treatments (WWTs and DWTs) did not apply any selective pressure. The overall results highlighted the importance to investigate the antibiotic resistance dynamics in aquatic ecosystems involved in urban water cycle integrating the information obtained by culture-dependent method with the culture-independent one and the need to monitor the presence of ARB and ARGs mainly in drinking water that represents a potential route of transmission to human.


Asunto(s)
Agua Potable , Purificación del Agua , Humanos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Genes Bacterianos , Bacterias/genética , Ecosistema , Agua Potable/análisis , Antagonistas de Receptores de Angiotensina/análisis , Ciclo Hidrológico , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Antibacterianos/análisis
12.
Chemosphere ; 313: 137578, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36529163

RESUMEN

The impact of Fenton oxidation (FO) and Air stripping (AS) pre-treatments on the bacterial community of a biological activated sludge (B-AS) process for the co-treatment of mature landfill leachate (MLL) and urban wastewater (UWW) was assessed. In this work high-throughput sequencing was used to identify changes in the composition of the bacterial communities when exposed to different landfill leachate's pre-treatments. The combination of FO and AS to increase biodegradability (BOD5/COD) and reduce ammonia concentration (NH3) respectively, allowed to successfully operate the B-AS and effectively treat MLL. In particular, BOD5/COD resulted to be the key factor for bacterial community shifting. The microbiological community of the B-AS, mainly composed by the phylum Bacteroidota (Saprospiraceae, PHOS-HE51, Chitinophagaceae) after FO pre-treatment, shifted to Pseudomonadota (Caulobacteraceae and Hyphomicrobiaceae) when FO was not used. At the same time a drastic reduction in BOD5 removal was observed (90%-58%). On the other hand, high NH3 concentration affected the abundance of the family Saprospiraceae, known to play a key role in the degradation of complex organic compounds in B-AS. The results obtained suggest that a suitable combination of pre-treatments can reduce the negative effect of MLL on the B-AS process, reducing the pressure on autochthonous bacteria and therefore the acclimatization time of the biological process.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis , Peróxido de Hidrógeno/química , Hierro/química , Oxidación-Reducción , Aclimatación , Bacterias/genética
13.
Environ Pollut ; 316(Pt 2): 120568, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351482

RESUMEN

Stochastic or deterministic processes control the bacterial community assembly in waters and their understanding is a fundamental question to correctly manage aquatic environments exposed to the release of antibiotics from anthropogenic sources. It has been suggested that microdiversity (i.e. the rare biosphere) convers freshwater communities with stability, meaning that previously rare taxa bloom when the community is disturbed. Since there might be a seed bank of similar, but not abundant, bacterial taxa in different waters, we tested whether a disturbance by an antibiotic cocktail would increase similarity in bacterial communities from different freshwater systems (a wastewater effluent and two lakes). In a continuous culture set-up in chemostats, we show that disturbance with antibiotics causes communities from different environments to become more similar. Once the antibiotic pressure is released the communities tend to become more dissimilar again. This shows that there is a similar shift in community composition even in waters from very different origins when they are disturbed by antibiotics, even at low concentrations. Antibiotics impact the bacterial communities at the cell and the community level, independently by the original degree of anthropogenic stress they are adapted to, altering the original phenotypes, genotypes, and the relations between bacteria.


Asunto(s)
Antibacterianos , Microbiota , Antibacterianos/toxicidad , Bacterias/genética , Lagos/microbiología , Aguas Residuales
14.
Environ Pollut ; 316(Pt 2): 120601, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351483

RESUMEN

The risk for human health posed by polluted aquatic environments, and especially those carrying antibiotic resistance genes (ARGs) of clinical interest, is still debated. This is because of our limited knowledge of the dynamics of antimicrobial resistance in the environment, the selection mechanisms underlying the spread of ARGs, and the ecological factors potentially favoring their return to humans. The Class 1 integron is one of the most effective platforms for the dissemination of ARGs. In this study we investigated a freshwater system consisting of a lake-river-lake continuum, determining the abundance of class 1 integrons and their associated ARGs by a modulated metagenomic approach. Bacterial abundance and community composition were used to identify the potential carriers of class 1 integrons and their associated ARGs over a period of six months. Class 1 integrons and their ARG cargoes were significantly more abundant in riverine sampling sites receiving treated wastewater. Further, class 1 integrons carried ARGs ranked at the highest risk for human health (e.g., catB genes), in particular, genes encoding resistance to aminoglycosides. Genera of potential pathogens, such as Pseudomonas and Escherichia-Shigella, were correlated with class 1 integrons. The lake-river-lake system demonstrated a clear relationship between the integrase gene of class 1 integrons (intI1) and anthropogenic impact, but also a strong environmental filtering that favored the elimination of intI1 once the human derived stressors were reduced. Overall, the results of this study underline the role class 1 integrons as proxy of anthropogenic pollution and suggest this genetic platform as an important driver of aminoglycoside resistance genes, including high risk ARGs, of potential concern for human health.


Asunto(s)
Antibacterianos , Integrones , Humanos , Integrones/genética , Antibacterianos/farmacología , Efectos Antropogénicos , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Lagos
15.
Vet Microbiol ; 274: 109576, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36155350

RESUMEN

Swine farms are considered a hotspot of antimicrobial resistance and may contribute to the spread of antibiotic-resistant and/or pathogenic bacteria into the environment as well as to farm workers. In this study, swine fecal samples have been collected over the primary production, selecting three categories, i.e., "Suckling piglets", "Weaning pigs" and "Fatteners", in six intensive swine farms, for two years. Feces were analysed for the detection and abundance of class 1 integrons (used as proxy of antibiotic resistance and of anthropogenic pollution), and of enterococci [fecal indicator bacteria (FIB) and potentially pathogenic for humans] by quantitative Real Time PCR. Furthermore, Enterococcus faecalis and Enterococcus faecium were isolated, analysed for the presence of the intI1 gene by Real Time PCR and genetically typed by Pulsed-Field Gel Electrophoresis. Both enterococci and class 1 integrons were significantly more abundant in the Suckling piglets (p = 0.0316 and 0.0242, respectively). About 8% of the isolated enterococci were positive for the intI1 gene by Real Time PCR. E. faecalis and E. faecium were found genetically heterogeneous and no specific pattern could be identified as the driver for their presence along the pig primary production. These findings suggest that the "Suckling piglets" category of production represents the key point where to mitigate the risk of transmission of enterococci and class 1 integrons with associated antibiotic resistance genes to humans and spread into the environment.


Asunto(s)
Enterococcus faecium , Enterococcus , Humanos , Porcinos , Animales , Integrones/genética , Granjas , Antibacterianos/farmacología , Heces/microbiología , Pruebas de Sensibilidad Microbiana/veterinaria , Farmacorresistencia Bacteriana/genética
16.
Environ Pollut ; 312: 120033, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36030962

RESUMEN

Seas and oceans are a global reservoir of antibiotic resistance genes (ARGs). Only a few studies investigated the dynamics of ARGs along the water column of the Black Sea, a unique environment, with a peculiar geology, biology and history of anthropogenic pollution. In this study, we analyzed metagenomic data from two sampling campaigns (2013 and 2019) collected across three different sites in the Western Black Sea at depths ranging from 5 to 2000 m. The data were processed to annotate ARGs, metal resistance genes (MRGs) and integron integrase genes. The ARG abundance was significantly higher in the deep water layers and depth was the main driver of beta-diversity both for ARGs and MRGs. Moreover, ARG and MRG abundances strongly correlated (r = 0.95). The integron integrase gene abundances and composition were not influenced by the water depth and did not correlate with ARGs. The analysis of the obtained MAGs showed that some of them harbored intI gene together with several ARGs and MRGs, suggesting the presence of multidrug resistant bacteria and that MRGs and integrons could be involved in the selection of ARGs. These results demonstrate that the Black Sea is not only an important reservoir of ARGs, but also that they accumulate in the deep water layers where co-selection with MRGs could be assumed as a relevant mechanism of their persistence.


Asunto(s)
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacología , Mar Negro , Farmacorresistencia Microbiana/genética , Integrasas/genética , Metagenómica/métodos , Metales , Agua
17.
Front Public Health ; 10: 918658, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795698

RESUMEN

A side effect of antibiotic usage is the emergence and dissemination of antibiotic resistance genes (ARGs) within microbial communities. The spread of ARGs among pathogens has emerged as a public health concern. While the distribution of ARGs is documented on a global level, their routes of transmission have not been clarified yet; for example, it is not clear whether and to what extent the emergence of ARGs originates in farms, following the selective pressure exerted by antibiotic usage in animal husbandry, and if they can spread into the environment. Here we address this cutting edge issue by combining data regarding antimicrobial usage and quantitative data from selected ARGs (blaTEM, blaCTXM, ermB, vanA, qnrS, tetA, sul2, and mcr-1) encoding for resistance to penicillins, macrolides-lincosamides-streptogramins, glycopeptides, quinolones, tetracyclines, sulfonamides, and colistin at the farm level. Results suggest that dairy farms could be considered a hotspot of ARGs, comprising those classified as the highest risk for human health and that a correlation existed between the usage of penicillins and blaTEM abundances, meaning that, although the antibiotic administration is not exclusive, it remains a certain cause of the ARGs' selection and spread in farms. Furthermore, this study identified the role of calves as the main source of ARGs spread in dairy farms, claiming the need for targeted actions in this productive category to decrease the load of ARGs along the production chain.


Asunto(s)
Antibacterianos , Genes Bacterianos , Animales , Antibacterianos/farmacología , Bovinos , Farmacorresistencia Microbiana/genética , Granjas , Penicilinas/farmacología
18.
Methods Mol Biol ; 2498: 151-176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35727544

RESUMEN

The temporal dynamics of coastal planktic communities can be disclosed through DNA metabarcoding on the filters of reverse-osmosis desalination plants. Here, we describe the steps that are necessary to process the filters in order to create the subsamples used for DNA extraction and the bioinformatic pipeline to perform the first exploratory analyses on this kind of dataset.


Asunto(s)
Biología Computacional , Plantas , Código de Barras del ADN Taxonómico/métodos , Filtración , Plantas/genética
19.
Astrobiology ; 22(9): 1072-1080, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35714354

RESUMEN

The spread of antibiotic resistance is becoming a serious global health concern. Numerous studies have been done to investigate the dynamics of antibiotic resistance genes (ARGs) in both indoor and outdoor environments. Nonetheless, few studies are available about the dynamics of the antibiotic resistome (total content of ARGs in the microbial cultures or communities) under stress in outer space environments. In this study, we aimed to experimentally investigate the dynamics of ARGs and metal resistance genes (MRGs) in Kombucha Mutualistic Community (KMC) samples exposed to Mars-like conditions simulated during the BIOMEX experiment outside the International Space Station with analysis of the metagenomics data previously produced. Thus, we compared them with those of the respective non-exposed KMC samples. The antibiotic resistome responded to the Mars-like conditions by enriching its diversity with ARGs after exposure, which were not found in non-exposed samples (i.e., tet and van genes against tetracycline and vancomycin, respectively). Furthermore, ARGs and MRGs were correlated; therefore, their co-selection could be assumed as a mechanism for maintaining antibiotic resistance in Mars-like environments. Overall, these results highlight the high plasticity of the antibiotic resistome in response to extraterrestrial conditions and in the absence of anthropogenic stresses.


Asunto(s)
Antibacterianos , Metagenoma , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Metagenómica
20.
Appl Environ Microbiol ; 88(9): e0252221, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35416683

RESUMEN

This study shows that Escherichia coli can be temporarily enriched in zooplankton under natural conditions and that these bacteria can belong to different phylogroups and sequence types (STs), including environmental, clinical, and animal isolates. We isolated 10 E. coli strains and sequenced the genomes of two of them. Phylogenetically, the two isolates were closer to strains isolated from poultry meat than to freshwater E. coli, albeit their genomes were smaller than those of the poultry isolates. After isolation and fluorescent protein tagging of strains ED1 and ED157, we show that Daphnia sp. can take up these strains and release them alive again, thus becoming a temporary host for E. coli. In a chemostat experiment, we show that this association does not prolong bacterial long-term survival, but at low abundances it also does not significantly reduce bacterial numbers. We demonstrate that E. coli does not belong to the core microbiota of Daphnia, suffers from competition by the natural Daphnia microbiota, but can profit from its carapax to survive in water. All in all, this study suggests that the association of E. coli with Daphnia is only temporary, but the cells are viable therein, and this might allow encounters with other bacteria for genetic exchange and potential genomic adaptation to the freshwater environment. IMPORTANCE The contamination of freshwater with feces-derived bacteria is a major concern regarding drinking water acquisition and recreational activities. Ecological interactions promoting their persistence are still very scarcely studied. This study, which analyses the survival of E. coli in the presence of zooplankton, is thus of ecological and water safety relevance.


Asunto(s)
Agua Potable , Escherichia coli , Animales , Bacterias , Daphnia/microbiología , Escherichia coli/genética , Heces/microbiología , Agua Dulce/microbiología , Zooplancton/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...