Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979576

RESUMEN

Borrelia spirochetes are the causative agents of Lyme disease and relapsing fever, two of the most common tick-borne illnesses. A characteristic feature of these spirochetes is their highly segmented genomes which consists of a linear chromosome and a mixture of up to approximately 24 linear and circular extrachromosomal plasmids. The complexity of this genomic arrangement requires multiple strategies for efficient replication and partitioning during cell division, including the generation of hairpin ends found on linear replicons mediated by the essential enzyme ResT, a telomere resolvase. Using an integrative structural biology approach employing advanced modelling, circular dichroism, X-ray crystallography and small-angle X-ray scattering, we have generated high resolution structural data on ResT from B. garinii. Our data provides the first high-resolution structures of ResT from Borrelia spirochetes and revealed active site positioning in the catalytic domain. We also demonstrate that the C-terminal domain of ResT is required for both transesterification steps of telomere resolution, and is a requirement for DNA binding, distinguishing ResT from other telomere resolvases from phage and bacteria. These results advance our understanding of the molecular function of this essential enzyme involved in genome maintenance in Borrelia pathogens.

2.
FEBS J ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696354

RESUMEN

Prokaryotic transcription factors (TFs) regulate gene expression in response to small molecules, thus representing promising candidates as versatile small molecule-detecting biosensors valuable for synthetic biology applications. The engineering of such biosensors requires thorough in vitro and in vivo characterization of TF ligand response as well as detailed molecular structure information. In this work, we functionally and structurally characterize the Pca regulon regulatory protein (PcaR) transcription factor belonging to the IclR transcription factor family. Here, we present in vitro functional analysis of the ligand profile of PcaR and the construction of genetic circuits for the characterization of PcaR as an in vivo biosensor in the model eukaryote Saccharomyces cerevisiae. We report the crystal structures of PcaR in the apo state and in complex with one of its ligands, succinate, which suggests the mechanism of dicarboxylic acid recognition by this transcription factor. This work contributes key structural and functional insights enabling the engineering of PcaR for dicarboxylic acid biosensors, in addition to providing more insights into the IclR family of regulators.

3.
iScience ; 25(10): 105054, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36157583

RESUMEN

Culturing eukaryotic cells has widespread applications in research and industry, including the emerging field of cell-cultured meat production colloquially referred to as "cellular agriculture". These applications are often restricted by the high cost of growth medium necessary for cell growth. Mitogenic protein growth factors (GFs) are essential components of growth medium and account for upwards of 90% of the total costs. Here, we present a set of expression constructs and a simplified protocol for recombinant production of functionally active GFs, including FGF2, IGF1, PDGF-BB, and TGF-ß1 in Escherichia coli. Using this E. coli expression system, we produced soluble GF orthologs from species including bovine, chicken, and salmon. Bioactivity analysis revealed orthologs with improved performance compared to commercially available alternatives. We estimated that the production cost of GFs using our methodology will significantly reduce the cost of cell culture medium, facilitating low-cost protocols tailored for cultured meat production and tissue engineering.

4.
N Biotechnol ; 62: 49-56, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33486119

RESUMEN

The coordinated action of carbohydrate-active enzymes has mainly been evaluated for the purpose of complete saccharification of plant biomass (lignocellulose) to sugars. By contrast, the coordinated action of accessory hemicellulases on xylan debranching and recovery is less well characterized. Here, the activity of two family GH115 α-glucuronidases (SdeAgu115A from Saccharophagus degradans, and AxyAgu115A from Amphibacillus xylanus) on spruce arabinoglucuronoxylan (AGX) was evaluated in combination with an α-arabinofuranosidase from families GH51 (AniAbf51A, aka E-AFASE from Aspergillus niger) and GH62 (SthAbf62A from Streptomyces thermoviolaceus). The α-arabinofuranosidases boosted (methyl)-glucuronic acid release by SdeAgu115A by approximately 50 % and 30 %, respectively. The impact of the α-arabinofuranosidases on AxyAgu115A activity was comparatively low, motivating its structural characterization. The crystal structure of AxyAgu115A revealed increased length and flexibility of the active site loop compared to SdeAgu115A. This structural difference could explain the ability of AxyAgu115A to accommodate more highly substituted arabinoglucuronoxylan, and inform enzyme selections for improved AGX recovery and use.


Asunto(s)
Bacillaceae/enzimología , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Modelos Moleculares
5.
ACS Chem Biol ; 15(7): 1874-1882, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32579338

RESUMEN

Reversible UbiD-like (de)carboxylases represent a large family of mostly uncharacterized enzymes, which require the recently discovered prenylated FMN (prFMN) cofactor for activity. Functional characterization of novel UbiDs is hampered by a lack of robust protocols for prFMN generation and UbiD activation. Here, we report two systems for in vitro and in vivo FMN prenylation and UbiD activation under aerobic conditions. The in vitro one-pot prFMN cascade includes five enzymes: FMN prenyltransferase (UbiX), prenol kinase, polyphosphate kinase, formate dehydrogenase, and FMN reductase, which use prenol, polyphosphate, formate, ATP, NAD+, and FMN as substrates and cofactors. Under aerobic conditions, this cascade produced prFMN from FMN with over 98% conversion and activated purified ferulic acid decarboxylase Fdc1 from Aspergillus niger and protocatechuic acid decarboxylase ENC0058 from Enterobacter cloaceae. The in vivo system for FMN prenylation and UbiD activation is based on the coexpression of Fdc1 and UbiX in Escherichia coli cells under aerobic conditions in the presence of prenol. The in vitro and in vivo FMN prenylation cascades will facilitate functional characterization of novel UbiDs and their applications.


Asunto(s)
Carboxiliasas/química , Mononucleótido de Flavina/síntesis química , Bacterias/enzimología , Biocatálisis , Dimetilaliltranstransferasa/química , Oxidorreductasas/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Prenilación
6.
J Am Chem Soc ; 142(2): 1038-1048, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31886667

RESUMEN

Production of platform chemicals from renewable feedstocks is becoming increasingly important due to concerns on environmental contamination, climate change, and depletion of fossil fuels. Adipic acid (AA), 6-aminocaproic acid (6-ACA) and 1,6-hexamethylenediamine (HMD) are key precursors for nylon synthesis, which are currently produced primarily from petroleum-based feedstocks. In recent years, the biosynthesis of adipic acid from renewable feedstocks has been demonstrated using both bacterial and yeast cells. Here we report the biocatalytic conversion/transformation of AA to 6-ACA and HMD by carboxylic acid reductases (CARs) and transaminases (TAs), which involves two rounds (cascades) of reduction/amination reactions (AA → 6-ACA → HMD). Using purified wild type CARs and TAs supplemented with cofactor regenerating systems for ATP, NADPH, and amine donor, we established a one-pot enzyme cascade catalyzing up to 95% conversion of AA to 6-ACA. To increase the cascade activity for the transformation of 6-ACA to HMD, we determined the crystal structure of the CAR substrate-binding domain in complex with AMP and succinate and engineered three mutant CARs with enhanced activity against 6-ACA. In combination with TAs, the CAR L342E protein showed 50-75% conversion of 6-ACA to HMD. For the transformation of AA to HMD (via 6-ACA), the wild type CAR was combined with the L342E variant and two different TAs resulting in up to 30% conversion to HMD and 70% to 6-ACA. Our results highlight the suitability of CARs and TAs for several rounds of reduction/amination reactions in one-pot cascade systems and their potential for the biobased synthesis of terminal amines.


Asunto(s)
Adipatos/metabolismo , Ácido Aminocaproico/metabolismo , Biocatálisis , Diaminas/metabolismo , Oxidorreductasas/metabolismo , Transaminasas/metabolismo , Bacterias/genética , Biotransformación , Clonación Molecular , Cristalografía por Rayos X , Cinética , Oxidorreductasas/química , Conformación Proteica , Especificidad por Sustrato , Transaminasas/química
7.
Proc Natl Acad Sci U S A ; 115(40): 10004-10009, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30217892

RESUMEN

The pathogenic strategy of Escherichia coli and many other gram-negative pathogens relies on the translocation of a specific set of proteins, called effectors, into the eukaryotic host cell during infection. These effectors act in concert to modulate host cell processes in favor of the invading pathogen. Injected by the type III secretion system (T3SS), the effector arsenal of enterohemorrhagic E. coli (EHEC) O157:H7 features at least eight individual NleG effectors, which are also found across diverse attaching and effacing pathogens. NleG effectors share a conserved C-terminal U-box E3 ubiquitin ligase domain that engages with host ubiquitination machinery. However, their specific functions and ubiquitination targets have remained uncharacterized. Here, we identify host proteins targeted for ubiquitination-mediated degradation by two EHEC NleG family members, NleG5-1 and NleG2-3. NleG5-1 localizes to the host cell nucleus and targets the MED15 subunit of the Mediator complex, while NleG2-3 resides in the host cytosol and triggers degradation of Hexokinase-2 and SNAP29. Our structural studies of NleG5-1 reveal a distinct N-terminal α/ß domain that is responsible for interacting with host protein targets. The core of this domain is conserved across the NleG family, suggesting this domain is present in functionally distinct NleG effectors, which evolved diversified surface residues to interact with specific host proteins. This is a demonstration of the functional diversification and the range of host proteins targeted by the most expanded effector family in the pathogenic arsenal of E. coli.


Asunto(s)
Infecciones por Escherichia coli/metabolismo , Escherichia coli O157 , Proteínas de Escherichia coli , Infecciones por Escherichia coli/patología , Escherichia coli O157/química , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Células HeLa , Hexoquinasa/metabolismo , Humanos , Complejo Mediador/metabolismo , Dominios Proteicos , Proteolisis , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Células U937
8.
Mol Syst Biol ; 12(12): 893, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27986836

RESUMEN

Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector-effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector-effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila-translocated substrates. While capturing all known examples of effector-effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct-a hallmark of an emerging class of proteins called metaeffectors, or "effectors of effectors". Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector-effector modulation, may be a common feature of many intracellular pathogens-with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/patogenicidad , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Legionella pneumophila/metabolismo , Modelos Biológicos , Mapas de Interacción de Proteínas , Biología de Sistemas/métodos
9.
J Biol Chem ; 291(27): 14120-14133, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27129264

RESUMEN

Glucuronic acid (GlcAp) and/or methylglucuronic acid (MeGlcAp) decorate the major forms of xylan in hardwood and coniferous softwoods as well as many cereal grains. Accordingly, the complete utilization of glucuronoxylans or conversion to sugar precursors requires the action of main chain xylanases as well as α-glucuronidases that release the α- (1→2)-linked (Me)GlcAp side groups. Herein, a family GH115 enzymefrom the marine bacterium Saccharophagus degradans 2-40(T), SdeAgu115A, demonstrated activity toward glucuronoxylan and oligomers thereof with preference toward MeGlcAp linked to internal xylopyranosyl residues. Unique biochemical characteristics of NaCl activation were also observed. The crystal structure of SdeAgu115A revealed a five-domain architecture, with an additional insertion C(+) domain that had significant impact on the domain arrangement of SdeAgu115A monomer and its dimerization. The participation of domain C(+) in substrate binding was supported by reduced substrate inhibition upon introducing W773A, W689A, and F696A substitutions within this domain. In addition to Asp-335, the catalytic essentiality of Glu-216 was revealed by site-specific mutagenesis. A primary sequence analysis suggested that the SdeAgu115A architecture is shared by more than half of GH115 members, thus defining a distinct archetype for GH115 enzymes.


Asunto(s)
Gammaproteobacteria/enzimología , Glicósido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Glicósido Hidrolasas/química , Biología Marina , Modelos Moleculares , Conformación Proteica , Homología de Secuencia de Aminoácido
10.
J Proteome Res ; 14(9): 4029-38, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26147956

RESUMEN

Ubiquitination is a key protein post-translational modification that regulates many important cellular pathways and whose levels are regulated by equilibrium between the activities of ubiquitin ligases and deubiquitinases. Here, we present a method to identify specific deubiquitinase substrates based on treatment of cell lysates with recombinant enzymes, immunoaffinity purification, and global quantitative proteomic analysis. As a model system to identify substrates, we used a virulence-related deubiquitinase, SseL, secreted by Salmonella enterica serovar Typhimurium into host cells. Using this approach, two SseL substrates were identified in the RAW 264.7 murine macrophage-like cell line, S100A6 and heterogeneous nuclear ribonuclear protein K, in addition to the previously reported K63-linked ubiquitin chains. These substrates were further validated by a combination of enzymatic and binding assays. This method can be used for the systematic identification of substrates of deubiquitinases from other organisms and applied to study their functions in physiology and disease.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteómica/métodos , Salmonella typhimurium/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Proteínas Bacterianas/química , Línea Celular , Inmunoensayo , Espectrometría de Masas , Ratones , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteasas Ubiquitina-Específicas/química , Ubiquitinación
11.
Microb Biotechnol ; 8(3): 419-33, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25267315

RESUMEN

The genome of the thermophilic fungus Scytalidium thermophilum (strain CBS 625.91) harbours a wide range of genes involved in carbohydrate degradation, including three genes, abf62A, abf62B and abf62C, predicted to encode glycoside hydrolase family 62 (GH62) enzymes. Transcriptome analysis showed that only abf62A and abf62C are actively expressed during growth on diverse substrates including straws from barley, alfalfa, triticale and canola. The abf62A and abf62C genes were expressed in Escherichia coli and the resulting recombinant proteins were characterized. Calcium-free crystal structures of Abf62C in apo and xylotriose bound forms were determined to 1.23 and 1.48 Å resolution respectively. Site-directed mutagenesis confirmed Asp55, Asp171 and Glu230 as catalytic triad residues, and revealed the critical role of non-catalytic residues Asp194, Trp229 and Tyr338 in positioning the scissile α-L-arabinofuranoside bond at the catalytic site. Further, the +2R substrate-binding site residues Tyr168 and Asn339, as well as the +2NR residue Tyr226, are involved in accommodating long-chain xylan polymers. Overall, our structural and functional analysis highlights characteristic differences between Abf62A and Abf62C, which represent divergent subgroups in the GH62 family.


Asunto(s)
Ascomicetos/enzimología , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono , Dominio Catalítico , Clonación Molecular , Análisis por Conglomerados , Cristalografía por Rayos X , Análisis Mutacional de ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Variación Genética , Glicósido Hidrolasas/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Filogenia , Tallos de la Planta/metabolismo , Conformación Proteica , Homología de Secuencia
12.
Biochem J ; 454(1): 157-66, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23750508

RESUMEN

Several members of the C-C MCP (meta-cleavage product) hydrolase family demonstrate an unusual ability to hydrolyse esters as well as the MCPs (including those from mono- and bi-cyclic aromatics). Although the molecular mechanisms responsible for such substrate promiscuity are starting to emerge, the full understanding of these complex enzymes is far from complete. In the present paper, we describe six distinct α/ß hydrolases identified through genomic approaches, four of which demonstrate the unprecedented characteristic of activity towards a broad spectrum of substrates, including p-nitrophenyl, halogenated, fatty acyl, aryl, glycerol, cinnamoyl and carbohydrate esters, lactones, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate and 2-hydroxy-6-oxohepta-2,4-dienoate. Using structural analysis and site-directed mutagenesis we have identified the three residues (Ser32, Val130 and Trp144) that determine the unusual substrate specificity of one of these proteins, CCSP0084. The results may open up new research avenues into comparative catalytic models, structural and mechanistic studies, and biotechnological applications of MCP hydrolases.


Asunto(s)
Proteínas Bacterianas/química , Esterasas/química , Evolución Molecular , Hidrolasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Burkholderia/química , Cristalografía por Rayos X , Esterasas/genética , Hidrolasas/genética , Datos de Secuencia Molecular , Proteobacteria/química , Pseudomonas/química , Pseudomonas/genética , Sphingomonas/química , Sphingomonas/genética
13.
PLoS One ; 6(3): e16934, 2011 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-21390267

RESUMEN

BACKGROUND: The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. METHODOLOGY/PRINCIPAL FINDINGS: We report the 1.8 Å crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. CONCLUSIONS/SIGNIFICANCE: Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.


Asunto(s)
Proteínas Bacterianas/química , Genes Bacterianos/genética , Integrones/genética , Preparaciones Farmacéuticas/metabolismo , Vibrio cholerae/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cationes , Secuencia Conservada/genética , Cristalografía por Rayos X , Ligandos , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína
14.
J Exp Bot ; 60(11): 3255-67, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19470656

RESUMEN

Gamma-aminobutyric acid transaminase (GABA-T) catalyses the breakdown of GABA to succinic semialdehyde. In this report, three GABA-T isoforms were identified in the tomato (Solanum lycopersicum L.) plant. The deduced amino acid sequences of the three isoforms are highly similar over most of their coding regions with the exception of their N-terminal regions. Transient expression of the individual full-length GABA-T isoforms fused to the green fluorescent protein in tobacco suspension-cultured cells revealed their distinct subcellular localizations to the mitochondrion, plastid or cytosol, and that the specific targeting of the mitochondrion- and plastid-localized isoforms is mediated by their predicted N-terminal presequences. Removal of the N-terminal targeting presequences from the mitochondrion and plastid GABA-T isoforms yielded good recovery of the soluble recombinant proteins in Escherichia coli when they were co-expressed with the GroES/EL molecular chaperone complex. Activity assays indicated that all three recombinant isoforms possess both pyruvate- and glyoxylate-dependent GABA-T activities, although the mitochondrial enzyme has a specific activity that is significantly higher than that of its plastid and cytosolic counterparts. Finally, differential expression patterns of the three GABA-T isoforms in reproductive tissues, but not vegetative tissues, suggest unique roles for each enzyme in developmental processes. Overall, these findings, together with recent information about rice and pepper GABA-Ts, indicate that the subcellular distribution of GABA-T in the plant kingdom is highly variable.


Asunto(s)
4-Aminobutirato Transaminasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Glioxilatos/metabolismo , Proteínas de Plantas/metabolismo , Ácido Pirúvico/metabolismo , Solanum lycopersicum/enzimología , 4-Aminobutirato Transaminasa/química , 4-Aminobutirato Transaminasa/genética , Secuencia de Aminoácidos , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Proteínas de Plantas/química , Proteínas de Plantas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Homología de Secuencia de Aminoácido
15.
J Exp Bot ; 60(6): 1743-57, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19264755

RESUMEN

Gamma-aminobutyrate transaminase (GABA-T) catalyses the breakdown of GABA to succinic semialdehyde. In this report, the previously identified Arabidopsis thaliana (L.) Heyhn GABA-T (AtGABA-T) was characterized in more detail. Full-length AtGABA-T contains an N-terminal 36 amino acid long targeting pre-sequence (36 amino acids) that is both sufficient and necessary for targeting the enzyme to mitochondria. Removal of the pre-sequence encoding this N-terminal targeting domain and co-expression of the resulting truncated AtGABA-T cDNA with the GroES/EL molecular chaperone complex in Escherichia coli yielded good recovery of the soluble recombinant proteins. Activity assays indicated that purified recombinant GABA-T has both pyruvate- and glyoxylate-dependent activities, but cannot utilize 2-oxoglutarate as amino acceptor. Kinetic parameters for glyoxylate- and pyruvate-dependent GABA-T activities were similar, with physiologically relevant affinities. Assays of GABA-T activity in cell-free leaf extracts from wild-type Arabidopsis and two knockout mutants in different genetic backgrounds confirmed that the native enzyme possesses both pyruvate- and glyoxylate-dependent activities. The GABA-T transcript was present throughout the plant, but its expression was highest in roots and increased as a function of leaf development. A GABA-T with dual functions suggests the potential for interaction between GABA metabolism and photorespiratory glyoxylate production.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Expresión Génica , Glioxilatos/metabolismo , Mitocondrias/enzimología , Ácido Pirúvico/metabolismo , Transaminasas/química , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cinética , Mitocondrias/química , Mitocondrias/genética , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transaminasas/genética , Transaminasas/metabolismo
16.
J Exp Bot ; 59(9): 2545-54, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18495639

RESUMEN

Enzymes that reduce the aldehyde chemical grouping (i.e. H-C=O) to its corresponding alcohol could be crucial in maintaining plant health. Recently, recombinant expression of a cytosolic enzyme from Arabidopsis thaliana (L.) Heynh (designated as glyoxylate reductase 1 or AtGR1) revealed that it effectively catalyses the in vitro reduction of both glyoxylate and succinic semialdehyde (SSA). In this paper, web-based bioinformatics tools revealed a second putative GR cDNA (GenBank Accession No. AAP42747; designated herein as AtGR2) that is 57% identical on an amino acid basis to GR1. Sequence encoding a putative targeting signal (N-terminal 43 amino acids) was deleted from the full-length GR2 cDNA and the resulting truncated gene was co-expressed with the molecular chaperones GroES/EL in Escherichia coli, enabling production and purification of soluble recombinant protein. Kinetic analysis revealed that recombinant GR2 catalysed the conversion of glyoxylate to glycolate (K(m) glyoxylate=34 microM), and SSA to gamma-hydroxybutyrate (K(m) SSA=8.96 mM) via an essentially irreversible, NADPH-based mechanism. GR2 had a 350-fold higher preference for glyoxylate than SSA, based on the performance constants (k(cat)/K(m)). Fluorescence microscopic analysis of tobacco (Nicotiana tabacum L.) suspension cells transiently transformed with GR1 linked to the green fluorescent protein (GFP) revealed that GR1 was localized to the cytosol, whereas GR2-GFP was localized to plastids via targeting information contained within its N-terminal 45 amino acids. The identification and characterization of distinct plastidial and cytosolic glyoxylate reductase isoforms is discussed with respect to aldehyde detoxification and the plant stress response.


Asunto(s)
Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Aldehídos/metabolismo , Arabidopsis/enzimología , Citosol/enzimología , Plastidios/enzimología , Oxidorreductasas de Alcohol/genética , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Línea Celular , Citosol/química , Citosol/fisiología , Expresión Génica , Homeostasis , Cinética , Datos de Secuencia Molecular , Oxidación-Reducción , Plastidios/química , Plastidios/genética , Plastidios/fisiología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Nicotiana
17.
Nat Methods ; 4(12): 1019-21, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17982461

RESUMEN

We tested the general applicability of in situ proteolysis to form protein crystals suitable for structure determination by adding a protease (chymotrypsin or trypsin) digestion step to crystallization trials of 55 bacterial and 14 human proteins that had proven recalcitrant to our best efforts at crystallization or structure determination. This is a work in progress; so far we determined structures of 9 bacterial proteins and the human aminoimidazole ribonucleotide synthetase (AIRS) domain.


Asunto(s)
Cristalización/métodos , Cristalografía/métodos , Péptido Hidrolasas/química , Proteínas/química , Proteínas/ultraestructura , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...