Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Mol Ther Nucleic Acids ; 35(2): 102221, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38868363

RESUMEN

Colorectal cancer (CRC) is one of the most common malignancies and a relevant cause of cancer-related deaths worldwide. Dysregulation of microRNA (miRNA) expression has been associated with the development and progression of various cancers, including CRC. Among them, miR-221 emerged as an oncogenic driver, whose high expression is associated with poor patient prognosis. The present study was conceived to investigate the anti-CRC activity of miR-221 silencing based on early clinical data achieved from a first-in-human study by our group. Going back from bedside to bench, we demonstrated that LNA-i-miR-221 reduces cell viability, induces apoptosis in vitro, and impairs tumor growth in preclinical in vivo models of CRC. Importantly, we disclosed that miR-221 directly targets TP53BP2, which, together with TP53INP1, is known as a positive regulator of the TP53 apoptotic pathway. We found that (1) both these genes are overexpressed following miR-221 inhibition, (2) the strong anti-tumor activity of LNA-i-miR-221 was selectively observed on TP53 wild-type cells, and (3) this activity was reduced in the presence of the TP53-inhibitor Pifitrin-α. Our data pave the way to further investigations on TP53 functionality as a marker predictive of response to miR-221 silencing, which might be relevant for clinical applications.

2.
J Periodontal Res ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766764

RESUMEN

The aim of this systematic review (SR) was to assess whether tooth mobility (TM) increases the risk of tooth extraction/loss. The protocol was registered in PROSPERO database (CRD42023485425). The focused PECO questions were as follows: (1) "In patients with periodontitis, undergoing periodontal treatment, are teeth affected by mobility at higher risk of being extracted/lost compared to non-mobile teeth, with a minimum follow-up of 10 years?" and (2) "In these patients, does varying degrees of tooth mobility increase the risk of tooth extraction/loss, with a minimum follow-up of 10 years?". Results were reported according to PRISMA statement. Electronic and manual searches were conducted to identify longitudinal studies. The different assessments of tooth mobility were pooled into three groups: TM0: Undetectable tooth mobility, TM1: Horizontal/Mesio-distal mobility ≤1 mm, TM2: Horizontal/Mesio-distal mobility >1 mm or vertical tooth mobility. Tooth loss was the primary outcome. Various meta-analyses were conducted, including subgroup analyses considering different follow-up lengths and the timing of TM assessment, along with sensitivity analyses. A trial sequential analysis was also performed. Eleven studies were included (1883 patients). The mean follow-up range was 10-25 years. The weighted total of included teeth, based on the sample size, was 18 918, with a total of 1604 (8.47%) extracted/lost teeth. The overall rate of tooth extraction/loss increased with increasing mobility: TM0 was associated with a 5.85% rate (866/14822), TM1 with the 11.8% (384/3255), TM2 with the 40.3% (339/841). Mobile teeth (TM1/TM2) were at an increased risk for tooth extraction/loss, compared to TM0 (HR: 2.85; [95% CI 1.88-4.32]; p < .00001). TM1 had a higher risk than TM0 (HR: 1.96; [95% CI 1.09-3.53]; p < .00001). TM2 had a higher risk than TM1 (HR: 2.85; [95% CI 2.19-3.70]; p < .00001) and TM0 (HR: 7.12; [95% CI 3.27-15.51]; p < .00001). The results of the tests for subgroup differences were not significant. Sensitivity meta-analyses yielded consistent results with other meta-analyses. Within the limits of the quality of the studies included in the meta-analyses, mobile teeth were at higher risk of being extracted/lost in the long-term and higher degrees of TM significantly influenced clinicians' decision to extract a tooth. However, most teeth can be retained in the long-term and thus TM should not be considered a reason for extraction or a risk factor for tooth loss, regardless of the degree of TM.

3.
Biomed Pharmacother ; 174: 116478, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547766

RESUMEN

BACKGROUND: Long-term survival induced by anticancer treatments discloses emerging frailty among breast cancer (BC) survivors. Trastuzumab-induced cardiotoxicity (TIC) is reported in at least 5% of HER2+BC patients. However, TIC mechanism remains unclear and predictive genetic biomarkers are still lacking. Interaction between systemic inflammation, cytokine release and ADME genes in cancer patients might contribute to explain mechanisms underlying individual susceptibility to TIC and drug response variability. We present a single institution case series to investigate the potential role of genetic variants in ADME genes in HER2+BC patients TIC experienced. METHODS: We selected data related to 40 HER2+ BC patients undergone to DMET genotyping of ADME constitutive variant profiling, with the aim to prospectively explore their potential role in developing TIC. Only 3 patients ("case series"), who experienced TIC, were compared to 37 "control group" matched patients cardiotoxicity-sparing. All patients underwent to left ventricular ejection fraction (LVEF) evaluation at diagnosis and during anti-HER2 therapy. Each single probe was clustered to detect SNPs related to cardiotoxicity. RESULTS: In this retrospective analysis, our 3 cases were homogeneous in terms of clinical-pathological characteristics, trastuzumab-based treatment and LVEF decline. We identified 9 polymorphic variants in 8 ADME genes (UGT1A1, UGT1A6, UGT1A7, UGT2B15, SLC22A1, CYP3A5, ABCC4, CYP2D6) potentially associated with TIC. CONCLUSION: Real-world TIC incidence is higher compared to randomized clinical trials and biomarkers with potential predictive value aren't available. Our preliminary data, as proof of concept, could suggest a predictive role of pharmacogenomic approach in the identification of cardiotoxicity risk biomarkers for anti-HER2 treatment.


Asunto(s)
Neoplasias de la Mama , Cardiotoxicidad , Polimorfismo de Nucleótido Simple , Trastuzumab , Humanos , Femenino , Trastuzumab/efectos adversos , Trastuzumab/farmacocinética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Cardiotoxicidad/genética , Persona de Mediana Edad , Estudios Retrospectivos , Antineoplásicos Inmunológicos/efectos adversos , Antineoplásicos Inmunológicos/farmacocinética , Anciano , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Adulto
4.
Int J Periodontics Restorative Dent ; 0(0): 1-24, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363180

RESUMEN

Polynucleotides and Hyaluronic Acid (PN-HA) mixture showed several effects in modulation of healing process. The aim of this study was to assess the safety and clinical performance of PN-HA alone or in association with Deproteinized Bovine Bone Mineral (DBBM) with papillary preservation flaps (PPF) in the treatment of residual pockets. A total of 43 patients with 55 infra-bony defects were recruited; 30% were smokers. The mean baseline Probing Depth (PD) was 7.7 ±1.9 mm with a corresponding mean recession (Rec) of 1.9± 1.3 mm. The depth of infra-bony defect at the surgical measurement was 5.2±2.1 mm. DBBM was applied at 56% of the defects considered as not-containing based on clinical judgment. Healing was uneventful at all sites. After one year, PD reduction was 4.4±1.8 mm with a Rec increase of 1.0 ±0.8 mm. Detected bone fill at x-ray was 3.5 ± 1.9mm. The multilevel analysis showed that absence of smoking habits was associated with improved PD reduction (P =0.026) and bone gain (P= 0.039). PN-HA mixture is a safe product for periodontal surgery and seems to promote clinical benefit in the treatment of residual pockets associated to infra-bony defects.

5.
Nat Commun ; 15(1): 904, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291037

RESUMEN

Mast cells localize to mucosal tissues and contribute to innate immune defense against infection. How mast cells sense, differentiate between, and respond to bacterial pathogens remains a topic of ongoing debate. Using the prototype enteropathogen Salmonella Typhimurium (S.Tm) and other related enterobacteria, here we show that mast cells can regulate their cytokine secretion response to distinguish between extracellular and invasive bacterial infection. Tissue-invasive S.Tm and mast cells colocalize in the mouse gut during acute Salmonella infection. Toll-like Receptor 4 (TLR4) sensing of extracellular S.Tm, or pure lipopolysaccharide, causes a modest induction of cytokine transcripts and proteins, including IL-6, IL-13, and TNF. By contrast, type-III-secretion-system-1 (TTSS-1)-dependent S.Tm invasion of both mouse and human mast cells triggers rapid and potent inflammatory gene expression and >100-fold elevated cytokine secretion. The S.Tm TTSS-1 effectors SopB, SopE, and SopE2 here elicit a second activation signal, including Akt phosphorylation downstream of effector translocation, which combines with TLR activation to drive the full-blown mast cell response. Supernatants from S.Tm-infected mast cells boost macrophage survival and maturation from bone-marrow progenitors. Taken together, this study shows that mast cells can differentiate between extracellular and host-cell invasive enterobacteria via a two-step activation mechanism and tune their inflammatory output accordingly.


Asunto(s)
Infecciones por Enterobacteriaceae , Infecciones por Salmonella , Ratones , Animales , Humanos , Mastocitos , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Citocinas/metabolismo
6.
Br J Haematol ; 204(2): 555-560, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37963444

RESUMEN

UMG1 is a unique epitope of CD43, not expressed by normal cells and tissues of haematopoietic and non-haematopoietic origin, except thymocytes and a minority (<5%) of peripheral blood T lymphocytes. By immunohistochemistry analysis of tissue microarray and pathology slides, we found high UMG1 expression in 20%-24% of diffuse large B-cell lymphomas (DLBCLs), including highly aggressive BCL2high and CD20low cases. UMG1 membrane expression was also found in DLBCL bone marrow-infiltrating cells and established cell lines. Targeting UMG1 with a novel asymmetric UMG1/CD3ε-bispecific T-cell engager (BTCE) induced redirected cytotoxicity against DLBCL cells and was synergistic with lenalidomide. We conclude that UMG1/CD3ε-BTCE is a promising therapeutic for DLBCLs.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfocitos T , Humanos , Linfocitos T/metabolismo , Linfoma de Células B Grandes Difuso/patología , Inmunohistoquímica
7.
Oral Dis ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38009861

RESUMEN

OBJECTIVE: To evaluate the impact of COVID-19 pandemic among a sample of Italian dentists in terms of infection, strategies for infection control, organization of the dental clinic, attitude, and behavior. MATERIAL AND METHODS: This was a cross-sectional survey. The sample consisted of 8000 Italian dentists selected among 63,375 using a computerized random sampling method. An electronic informed consent had to be signed. The questionnaire categories were on demographic, infection risk management, organization, and dentists' attitude and behavior. Geographic macro-areas were used for subgroup analysis. RESULTS: Among 8000 invited dentists, 2443 agreed to participate to the survey (30.6%). Mean age was 51.2 years, women were 34.5%. A total of 6.1% self-reported COVID-19 experience and higher rate of infection was reported in north Italy compared to the south (p < 0.05). FFP2/FFP3 respirators (97.1%) and visors (97.4%) were used by almost all dentists. While, natural ventilation and mouthwashes were the most frequent approaches used to reduce the infection risk. Most of the dentists reported positive attitude, nevertheless 83.6% felt an increased responsibility. CONCLUSION: The self-reported COVID-19 prevalence was 6.1% with some differences among geographic areas. COVID 19 had a deep impact on preventive strategies, dental office organization, and behavior within this sample.

8.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686290

RESUMEN

Diabetes mellitus (DM) is a complex and multifactorial disease characterised by high blood glucose. Type 2 Diabetes (T2D), the most frequent clinical condition accounting for about 90% of all DM cases worldwide, is a chronic disease with slow development usually affecting middle-aged or elderly individuals. T2D represents a significant problem of public health today because its incidence is constantly growing among both children and adults. It is also estimated that underdiagnosis prevalence would strongly further increase the real incidence of the disease, with about half of T2D patients being undiagnosed. Therefore, it is important to increase diagnosis accuracy. The current interest in RNA molecules (both protein- and non-protein-coding) as potential biomarkers for diagnosis, prognosis, and treatment lies in the ease and low cost of isolation and quantification with basic molecular biology techniques. In the present study, we analysed the transcriptome in serum samples collected from T2D patients and unaffected individuals to identify potential RNA-based biomarkers. Microarray-based profiling and subsequent validation using Real-Time PCR identified an uncharacterised long non-coding RNA (lncRNA) transcribed from the ASAP1 locus as a potential diagnostic biomarker. ROC curve analysis showed that a molecular signature including the lncRNA and the clinicopathological parameters of T2D patients as well as unaffected individuals showed a better diagnostic performance compared with the glycated haemoglobin test (HbA1c). This result suggests that the application of this biomarker in clinical practice would help to improve the diagnosis, and therefore the clinical management, of T2D patients. The proposed biomarker would be useful in the context of predictive, preventive, and personalised medicine (3PM/PPPM).


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , ARN Largo no Codificante , Adulto , Anciano , Niño , Humanos , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/genética , Salud Pública , ARN Largo no Codificante/genética
9.
Life (Basel) ; 13(9)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37763288

RESUMEN

BACKGROUND: Asthma is a clinical syndrome characterized by recurrent episodes of airway obstruction, bronchial hyperresponsiveness and airway inflammation. Most patients with asthma present a "type 2" (TH2) inflammation. ILC2 and TH2 cells release cytokines IL4, IL-13 and IL-5. CRSwNP is a condition characterized by hyposmia or anosmia, nasal congestion, nasal discharge, and face pain or pressure that last for at least 12 weeks in a row without relief. Both asthma and CRSwNP are often characterized by a type 2 inflammation endotype and are often present in the same patient. Dupilumab is a fully human monoclonal antibody targeting the interleukin-4 receptor α (IL-4Rα) subunit, blocking IL4/IL-4Rα binding and IL13. It has been labelled for the treatment of moderate to severe asthma in patients from the age of 12 years with an eosinophilic phenotype, and it has demonstrated efficacy and acceptable safety. Our study aims to investigate the effects of dupilumab on type 2 inflammatory biomarkers, such as eosinophils and eosinophil cationic protein (ECP). ECP is an eosinophil-derived substance contained in granules that are released during inflammation and causes various biological effects, including tissue damage in asthmatic airways. METHODS: ECP, Eosinophil counts (EOS), and total immunoglobulin E (IgE) levels were longitudinally measured using immunoassays in the serum of 21 patients affected by CRSwNP, of which 17 had asthma as a comorbidity, receiving 300 mg dupilumab every two weeks. RESULTS: The EOS and ECP, after a first phase of significant increase due to the intrinsic characteristic of the block of IL-4 and IL-13, returned to the baseline 10 months after the initial administration of dupilumab. Fractional exhaled nitric oxide (FeNO) and serum total IgE decreased significantly after 9 months. Asthma Control Test (ACT) scores improved after dupilumab treatment. FEV1% and FEV1 absolute registered a significant improvement at 10 months. CONCLUSIONS: Patients who received 300 milligrams of dupilumab every two weeks first experienced a temporary increase in eosinophils (EOS) and eosinophil cationic protein (ECP), then exhibited a gradual decline in these variables with a subsequent return to the initial baseline levels. When compared to the baseline, we observed that the levels of IgE and FeNO decreased over time, while there was an increase in both FEV1 and FEV1%.

10.
Open Res Eur ; 3: 31, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645510

RESUMEN

The main aim of this paper is to discuss the socio-political meaning of the transnational literary production made by female migrant writers. Thus, it analyses their role in the framework of the 'hybrid' literary production of the 21st century in Europe, such as Spain and Italy. Moving away from the idea of national literatures, this paper investigates literature as a geographical and emotional inquiry point and friction between languages, ideas, practices, literary institutions, female authors, and female voices in today's markets. Hybrid literature written by first and second-generation migrants and displaced people is part of a huger concept of transnational literature, which breaks down with the idea of national identity and transiting towards a new conceptualization of hybridity in the literary production, also based on the translation of writings to other languages. The research question is about the relation between the transnational literary works, written by migrant women, and the social change. Based on the conceptualization of the Bhabha's 'third space', I will analyse the relation between the positioning of female migrant writers of 21st century and the role of hybridity. The preliminary findings show, firstly, the idea of reconceptualising it appears in light of the complexity of migrant people's realities and sex-gender differences. By adopting an intersectional lens, focused on the dialectic between gender and race/ethnicity and class, this paper analyses the tensions embedded in the re-positioning of four female migrant writers and their transnational experience (self)reflected in their writings. The present research contributes to the scientific knowledge in the field of cross-cultural literary studies, crossed with the migration study, through questioning the changing gender role and relations in transnational migrant literature. In addition, the findings show that today's reflection on 'third space' theory in the diasporic literature seems an idea to be refined when migrant women are involved.

11.
Arch Pharm (Weinheim) ; 356(8): e2300134, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37309243

RESUMEN

Nowadays, RNA is an attractive target for the design of new small molecules with different pharmacological activities. Among several RNA molecules, long noncoding RNAs (lncRNAs) are extensively reported to be involved in cancer pathogenesis. In particular, the overexpression of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays an important role in the development of multiple myeloma (MM). Starting from the crystallographic structure of the triple-helical stability element at the 3'-end of MALAT1, we performed a structure-based virtual screening of a large commercial database, previously filtered according to the drug-like properties. After a thermodynamic analysis, we selected five compounds for the in vitro assays. Compound M5, characterized by a diazaindene scaffold, emerged as the most promising molecule enabling the destabilization of the MALAT1 triplex structure and antiproliferative activity on in vitro models of MM. M5 is proposed as a lead compound to be further optimized for improving its affinity toward MALAT1.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/química , Relación Estructura-Actividad
12.
J Hematol Oncol ; 16(1): 68, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365583

RESUMEN

BACKGROUND: We developed a 13-mer locked nucleic acid (LNA) inhibitor of miR-221 (LNA-i-miR-221) with a full phosphorothioate (PS)-modified backbone. This agent downregulated miR-221, demonstrated anti-tumor activity against human xenografts in mice, and favorable toxicokinetics in rats and monkeys. Allometric interspecies scaling allowed us to define the first-in-class LNA-i-miR-221 safe starting dose for the clinical translation. METHODS: In this first-in-human, open-label, dose-escalation phase 1 trial, we enrolled progressive cancer patients (aged ≥ 18 years) with ECOG 0-2 into 5 cohorts. The treatment cycle was based on a 30-min IV infusion of LNA-i-miR-221 on 4 consecutive days. Three patients within the first cohort were treated with 2 cycles (8 infusions), while 14 patients were treated with a single course (4 infusions); all patients were evaluated for phase 1 primary endpoint. The study was approved by the Ethics Committee and Regulatory Authorities (EudraCT 2017-002615-33). RESULTS: Seventeen patients received the investigational treatment, and 16 were evaluable for response. LNA-i-miR-221 was well tolerated, with no grade 3-4 toxicity, and the MTD was not reached. We recorded stable disease (SD) in 8 (50.0%) patients and partial response (PR) in 1 (6.3%) colorectal cancer case (total SD + PR: 56.3%). Pharmacokinetics indicated non-linear drug concentration increase across the dose range. Pharmacodynamics demonstrated concentration-dependent downregulation of miR-221 and upregulation of its CDKN1B/p27 and PTEN canonical targets. Five mg/kg was defined as the recommended phase II dose. CONCLUSIONS: The excellent safety profile, the promising bio-modulator, and the anti-tumor activity offer the rationale for further clinical investigation of LNA-i-miR-221 (ClinTrials.Gov: NCT04811898).


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/uso terapéutico , Neoplasias/tratamiento farmacológico , Oligonucleótidos/uso terapéutico
13.
Chem Sci ; 14(20): 5291-5301, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37234898

RESUMEN

Sulfur is an essential element of life. Thiol-containing metabolites in all organisms are involved in the regulation of diverse biological processes. Especially, the microbiome produces bioactive metabolites or biological intermediates of this compound class. The analysis of thiol-containing metabolites is challenging due to the lack of specific tools, making these compounds difficult to investigate selectively. We have now developed a new methodology comprising bicyclobutane for chemoselective and irreversible capturing of this metabolite class. We utilized this new chemical biology tool immobilized onto magnetic beads for the investigation of human plasma, fecal samples, and bacterial cultures. Our mass spectrometric investigation detected a broad range of human, dietary and bacterial thiol-containing metabolites and we even captured the reactive sulfur species cysteine persulfide in both fecal and bacterial samples. The described comprehensive methodology represents a new mass spectrometric strategy for the discovery of bioactive thiol-containing metabolites in humans and the microbiome.

14.
J Transl Med ; 21(1): 301, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143061

RESUMEN

BACKGROUND: Pronectins™ are a new class of fibronectin-3-domain 14th-derived (14Fn3) antibody mimics that can be engineered as bispecific T cell engager (BTCE) to redirect immune effector cells against cancer. We describe here the in vitro and in vivo activity of a Pronectin™ AXL-targeted first-in-class bispecific T cell engager (pAXLxCD3ε) against Epithelial Ovarian Cancer (EOC). METHODS: pAXLxCD3ε T-cell mediated cytotoxicity was evaluated by flow cytometry and bioluminescence. pAXLxCD3ε mediated T-cell infiltration, activation and proliferation were assessed by immunofluorescence microscopy and by flow cytometry. Activity of pAXLxCD3ε was also investigated in combination with poly-ADP ribose polymerase inhibitors (PARPi). In vivo antitumor activity of pAXLxCD3ε was evaluated in immunocompromised (NSG) mice bearing intraperitoneal or subcutaneous EOC xenografts and immunologically reconstituted with human peripheral blood mononuclear cells (PBMC). RESULTS: pAXLxCD3ε induced dose-dependent cytotoxicity by activation of T lymphocytes against EOC cells, regardless of their histologic origin. The addition of PARPi to cell cultures enhanced pAXLxCD3ε cytotoxicity. Importantly, in vivo, pAXLxCD3ε was highly effective against EOC xenografts in two different NSG mouse models, by inhibiting the growth of tumor cells in ascites and subcutaneous xenografts. This effect translated into a significantly prolonged survival of treated animals. CONCLUSION: pAXLxCD3ε is an active therapeutics against EOC cells providing a rational for its development as a novel agent in this still incurable disease. The preclinical validation of a first-in-class agent opens the way to the development of a new 14Fn3-based scaffold platform for the generation of innovative immune therapeutics against cancer.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias Ováricas , Humanos , Ratones , Animales , Femenino , Leucocitos Mononucleares , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Linfocitos T , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Complejo CD3
15.
Methods Mol Biol ; 2674: 295-311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258976

RESUMEN

Bacterial host cell invasion has routinely been investigated by gentamicin protection assays, which are laborsome and suffer from pronounced experimental noise. This chapter describes an internally controlled, medium- to high-throughput method that resolves the capacity of multiple Salmonella virulence factor mutant strains to bind and invade host cells. The method, widely applicable to also other pathogens, is based on the combination of consortia of genetically tagged isogenic bacterial strains and a modified gentamicin protection assay. These protocols provide a flexible tool box to stringently quantify host cell binding and invasive properties of different mutants. Moreover, the method can be applied to both infections of cultured host cells and in vivo animal models, providing a comparable genetic readout, which greatly facilitates comparisons across experimental models.


Asunto(s)
Salmonella typhimurium , Factores de Virulencia , Animales , Salmonella typhimurium/genética , Factores de Virulencia/metabolismo , Células Cultivadas
16.
J Periodontol ; 94(10): 1200-1209, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37036093

RESUMEN

BACKGROUND: The purpose of the present study was to prospectively evaluate the 3-year changes in the gingival dimensions following multiple coronally advanced flap (MCAF) with selective use of connective tissue graft (CTG). In addition, the secondary aim was to histologically identify the factors related to phenotype changes. METHODS: Twenty patients treated with MCAF and site-specific application of a CTG were available for the 3-year follow-up. Outcome measures included complete root coverage (CRC), recession reduction, keratinized tissue width (KTW), marginal tissue thickness changes, and primary flap position. Biopsies were harvested at one of the sites treated with the adjunct of CTG. All sections were stained with hematoxylin and eosin, Masson trichrome, Verhoeff-van Gieson, tenascin, and alcian blue stain for semiquantitative evaluation. RESULTS: At 3 years, CRC was detected in 86% of sites treated with MCAF alone and 81% of sites treated with MCAF + CTG. The 47% of sites treated with MCAF + CTG presented an apical shift of primary flap from its original position. Linear regression showed a significant association between KTW change and the initial KTW in MCAF-treated sites, while both initial KTW and position of primary flap were statistically significantly associated factors with KTW changes in the MCAF + CTG group. In all the biopsies examined, there is always a marked and clear separation between the connective tissue of the gingival flap and the palatal connective tissue of the graft. CONCLUSIONS: The selective use of CTG is an effective treatment for multiple gingival recessions. Only a limited increase in KTW can be expected in a bilaminar technique if, during the healing phases, the connective tissue is maintained completely covered.


Asunto(s)
Recesión Gingival , Raíz del Diente , Humanos , Estudios Prospectivos , Raíz del Diente/cirugía , Encía/trasplante , Recesión Gingival/cirugía , Tejido Conectivo/trasplante , Resultado del Tratamiento
17.
Cancers (Basel) ; 15(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36980534

RESUMEN

Sarcomas are heterogeneous malignancies with limited therapeutic options and a poor prognosis. We developed an innovative immunotherapeutic agent, a first-in-class Pronectin™-based Bispecific T-Cell Engager (pAXL×CD3ε), for the targeting of AXL, a TAM family tyrosine kinase receptor highly expressed in sarcomas. AXL expression was first analyzed by flow cytometry, qRT-PCR, and Western blot on a panel of sarcoma cell lines. The T-cell-mediated pAXL×CD3ε cytotoxicity against sarcoma cells was investigated by flow cytometry, luminescence assay, and fluorescent microscopy imaging. The activation and degranulation of T cells induced by pAXL×CD3ε were evaluated by flow cytometry. The antitumor activity induced by pAXL×CD3ε in combination with trabectedin was also investigated. In vivo activity studies of pAXL×CD3ε were performed in immunocompromised mice (NSG), engrafted with human sarcoma cells and reconstituted with human peripheral blood mononuclear cells from healthy donors. Most sarcoma cells showed high expression of AXL. pAXL×CD3ε triggered T-lymphocyte activation and induced dose-dependent T-cell-mediated cytotoxicity. The combination of pAXL×CD3ε with trabectedin increased cytotoxicity. pAXL×CD3ε inhibited the in vivo growth of human sarcoma xenografts, increasing the survival of treated mice. Our data demonstrate the antitumor efficacy of pAXL×CD3ε against sarcoma cells, providing a translational framework for the clinical development of pAXL×CD3ε in the treatment of human sarcomas, aggressive and still-incurable malignancies.

18.
J Exp Clin Cancer Res ; 42(1): 71, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36967378

RESUMEN

BACKGROUND: Multiple myeloma (MM) is a hematologic malignancy characterized by high genomic instability, and telomere dysfunction is an important cause of acquired genomic alterations. Telomeric repeat-containing RNA (TERRA) transcripts are long non-coding RNAs involved in telomere stability through the interaction with shelterin complex. Dysregulation of TERRAs has been reported across several cancer types. We recently identified a small molecule, hit 17, which stabilizes the secondary structure of TERRA. In this study, we investigated in vitro and in vivo anti-MM activities of hit 17. METHODS: Anti-proliferative activity of hit 17 was evaluated in different MM cell lines by cell proliferation assay, and the apoptotic process was analyzed by flow cytometry. Gene and protein expressions were detected by RT-qPCR and western blotting, respectively. Microarray analysis was used to analyze the transcriptome profile. The effect of hit 17 on telomeric structure was evaluated by chromatin immunoprecipitation. Further evaluation in vivo was proceeded upon NCI-H929 and AMO-1 xenograft models. RESULTS: TERRA G4 stabilization induced in vitro dissociation of telomeric repeat-binding factor 2 (TRF2) from telomeres leading to the activation of ATM-dependent DNA damage response, cell cycle arrest, proliferation block, and apoptotic death in MM cell lines. In addition, up-regulation of TERRA transcription was observed upon DNA damage and TRF2 loss. Transcriptome analysis followed by gene set enrichment analysis (GSEA) confirmed the involvement of the above-mentioned processes and other pathways such as E2F, MYC, oxidative phosphorylation, and DNA repair genes as early events following hit 17-induced TERRA stabilization. Moreover, hit 17 exerted anti-tumor activity against MM xenograft models. CONCLUSION: Our findings provide evidence that targeting TERRA by hit 17 could represent a promising strategy for a novel therapeutic approach to MM.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Telómero , Transcripción Genética , Apoptosis , Transcriptoma
19.
J Transl Med ; 20(1): 482, 2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273153

RESUMEN

BACKGROUND: DNA ligases are crucial for DNA repair and cell replication since they catalyze the final steps in which DNA breaks are joined. DNA Ligase III (LIG3) exerts a pivotal role in Alternative-Non-Homologous End Joining Repair (Alt-NHEJ), an error-prone DNA repair pathway often up-regulated in genomically unstable cancer, such as Multiple Myeloma (MM). Based on the three-dimensional (3D) LIG3 structure, we performed a computational screening to identify LIG3-targeting natural compounds as potential candidates to counteract Alt-NHEJ activity in MM. METHODS: Virtual screening was conducted by interrogating the Phenol Explorer database. Validation of binding to LIG3 recombinant protein was performed by Saturation Transfer Difference (STD)-nuclear magnetic resonance (NMR) experiments. Cell viability was analyzed by Cell Titer-Glo assay; apoptosis was evaluated by flow cytometric analysis following Annexin V-7AAD staining. Alt-NHEJ repair modulation was evaluated using plasmid re-joining assay and Cytoscan HD. DNA Damage Response protein levels were analyzed by Western blot of whole and fractionated protein extracts and immunofluorescence analysis. The mitochondrial DNA (mtDNA) copy number was determined by qPCR. In vivo activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. RESULTS: Here, we provide evidence that a natural flavonoid Rhamnetin (RHM), selected by a computational approach, counteracts LIG3 activity and killed Alt-NHEJ-dependent MM cells. Indeed, Nuclear Magnetic Resonance (NMR) showed binding of RHM to LIG3 protein and functional experiments revealed that RHM interferes with LIG3-driven nuclear and mitochondrial DNA repair, leading to significant anti-MM activity in vitro and in vivo. CONCLUSION: Taken together, our findings provide proof of concept that RHM targets LIG3 addiction in MM and may represent therefore a novel promising anti-tumor natural agent to be investigated in an early clinical setting.


Asunto(s)
ADN Ligasa (ATP) , Reparación del ADN , Flavonoides , Mieloma Múltiple , Animales , Ratones , Anexina A5/genética , Anexina A5/metabolismo , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , ADN Ligasas/química , ADN Ligasas/genética , ADN Ligasas/metabolismo , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Ratones Endogámicos NOD , Ratones SCID , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Fenoles , Proteínas Recombinantes/metabolismo
20.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142133

RESUMEN

Microtubule-targeting agents (MTAs) are effective drugs for cancer treatment. A novel diaryl [1,2]oxazole class of compounds binding the colchicine site was synthesized as cis-restricted-combretastatin-A-4-analogue and then chemically modified to have improved solubility and a wider therapeutic index as compared to vinca alkaloids and taxanes. On these bases, a new class of tricyclic compounds, containing the [1,2]oxazole ring and an isoindole moiety, has been synthetized, among which SIX2G emerged as improved MTA. Several findings highlighted the ability of some chemotherapeutics to induce immunogenic cell death (ICD), which is defined by the cell surface translocation of Calreticulin (CALR) via dissociation of the PP1/GADD34 complex. In this regard, we computationally predicted the ability of SIX2G to induce CALR exposure by interacting with the PP1 RVxF domain. We then assessed both the potential cytotoxic and immunogenic activity of SIX2G on in vitro models of multiple myeloma (MM), which is an incurable hematological malignancy characterized by an immunosuppressive milieu. We found that the treatment with SIX2G inhibited cell viability by inducing G2/M phase cell cycle arrest and apoptosis. Moreover, we observed the increase of hallmarks of ICD such as CALR exposure, ATP release and phospho-eIF2α protein level. Through co-culture experiments with immune cells, we demonstrated the increase of (i) CD86 maturation marker on dendritic cells, (ii) CD69 activation marker on cytotoxic T cells, and (iii) phagocytosis of tumor cells following treatment with SIX2G, confirming the onset of an immunogenic cascade. In conclusion, our findings provide a framework for further development of SIX2G as a new potential anti-MM agent.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Alcaloides de la Vinca , Humanos , Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Calreticulina/metabolismo , Línea Celular Tumoral , Colchicina/farmacología , Muerte Celular Inmunogénica , Isoindoles/farmacología , Microtúbulos/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Oxazoles/farmacología , Taxoides/farmacología , Alcaloides de la Vinca/farmacología , Pemetrexed/farmacología , Pemetrexed/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...