Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1434, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228668

RESUMEN

Early and sensitive biomarkers of liver dysfunction and drug-induced liver injury (DILI) are still needed, both for patient care and drug development. We developed the Serum Enhanced Binding (SEB) test to reveal post-transcriptional modifications (PTMs) of human serum albumin resulting from hepatocyte dysfunctions and further evaluated its performance in an animal model. The SEB test consists in spiking serum ex-vivo with ligands having specific binding sites related to the most relevant albumin PTMs and measuring their unbound fraction. To explore the hypothesis that albumin PTMs occur early during liver injury and can also be detected by the SEB test, we induced hepatotoxicity in male albino Wistar rats by administering high daily doses of ethanol and CCl4 over several days. Blood was collected for characterization and quantification of albumin isoforms by high-resolution mass spectrometry, for classical biochemical analyses as well as to apply the SEB test. In the exposed rats, the appearance of albumin isoforms paralleled the positivity of the SEB test ligands and histological injuries. These were observed as early as D3 in the Ethanol and CCl4 groups, whereas the classical liver tests (ALT, AST, PAL) significantly increased only at D7. The behavior of several ligands was supported by structural and molecular simulation analysis. The SEB test and albumin isoforms revealed hepatocyte damage early, before the current biochemical biomarkers. The SEB test should be easier to implement in the clinics than albumin isoform profiling.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado , Ratas , Masculino , Humanos , Animales , Hígado/metabolismo , Ratas Wistar , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Albúminas/metabolismo , Etanol/metabolismo , Biomarcadores/metabolismo , Isoformas de Proteínas/metabolismo , Tetracloruro de Carbono/toxicidad
2.
Basic Clin Pharmacol Toxicol ; 133(5): 508-525, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37038087

RESUMEN

ATP-binding cassette C-family drug membrane transporters play an important role in local pharmacokinetics, that is, drug concentration in cellular compartments. From the structural point of view, only the bovine ortholog of the multidrug resistance-associated protein 1 (bMRP1) has been resolved. We here used µs-scaled molecular dynamics simulations to investigate the structure and dynamics of the bovine multidrug resistance-associated protein 1 in pre- and post-hydrolysis functional states. The present work aims to examine the slight but likely relevant structural differences between pre- and post-hydrolysis states of outward-facing conformations as well as the interactions between the multidrug resistance-associated protein 1 and the surrounding lipid bilayer. Global conformational dynamics show unfavourable extracellular opening associated with nucleotide-binding domain dimerization indicating that the post-hydrolysis state adopts a close-cleft conformation rather than an outward-open conformation. Our present simulations also highlight persistent interactions with annular cholesterol molecules and the expected active role of lipid bilayer in the allosteric communication between distant domains of the transporter.

3.
Commun Biol ; 6(1): 149, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737455

RESUMEN

Multidrug resistance-associated proteins are ABC C-family exporters. They are crucial in pharmacology as they transport various substrates across membranes. However, the role of the degenerate nucleotide-binding site (NBS) remains unclear likewise the interplay with the surrounding lipid environment. Here, we propose a dynamic and structural overview of MRP1 from ca. 110 µs molecular dynamics simulations. ATP binding to NBS1 is likely maintained along several transport cycles. Asymmetric NBD behaviour is ensured by lower signal transduction from NBD1 to the rest of the protein owing to the absence of ball-and-socket conformation between NBD1 and coupling helices. Even though surrounding lipids play an active role in the allosteric communication between the substrate-binding pocket and NBDs, our results suggest that lipid composition has a limited impact, mostly by affecting transport kinetics. We believe that our work can be extended to other degenerate NBS ABC proteins and provide hints for deciphering mechanistic differences among ABC transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Nucleótidos , Nucleótidos/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Lípidos
4.
Biomed Pharmacother ; 160: 114342, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739760

RESUMEN

The Organic Anion Transporter 1 is a membrane transporter known for its central role in drug elimination by the kidney. hOAT1 is an antiporter translocating substrate in exchange for a-ketoglutarate. The understanding of hOAT1 structure and function remains limited due to the absence of resolved structure of hOAT1. Benefiting from conserved structural and functional patterns shared with other Major Facilitator Superfamily transporters, the present study intended to investigate fragments of hOAT1 transport function and modulation of its activity in order to make a step forward the understanding of its transport cycle. µs-long molecular dynamics simulation of hOAT1 were carried out suggesting two plausible binding sites for a typical substrate, adefovir, in line with experimental observations. The well-known B-like motif binding site was observed in line with previous studies. However, we here propose a new inner binding cavity which is expected to be involved in substrate translocation event. Binding modes of hOAT1 co-substrate α-ketoglutarate were also investigated suggesting that it may bind to highly conserved intracellular motifs. We here hypothesise that α-ketoglutarate may disrupt the pseudo-symmetrical intracellular charge-relay system which in turn may participate to the destabilisation of OF conformation. Investigations regarding allosteric communications along hOAT1 also suggest that substrate binding event might modulate the dynamics of intracellular charge relay system, assisted by surrounding lipids as active partners. We here proposed a structural rationalisation of transport impairments observed for two single nucleotide polymorphisms, p.Arg50His and p.Arg454Gln suggesting that the present model may be used to transport dysfunctions arising from hOAT1 mutations.


Asunto(s)
Ácidos Cetoglutáricos , Proteína 1 de Transporte de Anión Orgánico , Humanos , Proteína 1 de Transporte de Anión Orgánico/genética , Proteínas de Transporte de Membrana , Lípidos
5.
Genes (Basel) ; 13(8)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-36011266

RESUMEN

PhexL222P mouse is a new ENU mouse model for XLH disease due to Leu to Pro amino acid modification at position 222. PhexL222P mouse is characterized by growth retardation, hypophosphatemia, hypocalcemia, reduced body bone length, and increased epiphyseal growth plate thickness and femur diameter despite the increase in PHEXL222P expression. Actually, PhexL222P mice show an increase in Fgf23, Dmp1, and Mepe and Slc34a1 (Na-Pi IIa cotransporter) mRNA expression similar to those observed in Hyp mice. Femoral osteocalcin and sclerostin and Slc34a1 do not show any significant variation in PhexL222P mice. Molecular dynamics simulations support the experimental data. P222 might locally break the E217-Q224 ß-sheet, which in turn might disrupt inter-ß-sheet interactions. We can thus expect local protein misfolding, which might be responsible for the experimentally observed PHEXL222P loss of function. This model could be a valuable addition to the existing XLH model for further comprehension of the disease occurrence and testing of new therapies.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Animales , Huesos/metabolismo , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/genética , Ratones , Mutación , Endopeptidasa Neutra Reguladora de Fosfato PHEX/metabolismo
6.
Nanoscale ; 14(19): 7387-7407, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35536011

RESUMEN

Phospholipid-porphyrin conjugates (PL-Por) are nowadays considered as a unique class of building blocks that can self-assemble into supramolecular structures that possess multifunctional properties and enhanced optoelectronics characteristics compared to their disassembled counterparts. However, despite their versatile properties, little is known about the impact of the packing parameter of PL-Por conjugates on their assembling mechanism and their molecular organization inside these assemblies. To gain a better understanding on their assembling properties, we synthesized two new series of PL-Por conjugates with different alkyl sn2-chain lengths linked via an amide bond to either pheophorbide-a (PhxLPC) or pyropheophorbide-a (PyrxLPC). By combining a variety of experimental techniques with molecular dynamics (MD) simulations, we investigated both the assembling and optical properties of the PL-Por either self-assembled or when incorporated into lipid bilayers. We demonstrated that independently of the linker length, PhxLPC assembled into closed ovoid structures, whereas PyrxLPC formed rigid open sheets. Interestingly, PyrxLPC assemblies displayed a significant red shift and narrowing of the Q-band indicating the formation of ordered J-aggregates. The MD simulations highlighted the central role of the interaction between porphyrin cores rather than the length difference between the two phospholipid chains in controlling the structure of the lipid bilayer membranes and thus their optical properties. Indeed, while PhxLPC have the tendency to form inter-leaflet π-stacked dimers, PyrxLPC conjugates formed dimers within the same leaflet. Altogether, this work could be used as guidelines for the design of new PL-Por conjugates that self-assemble into bilayer-like supramolecular structures with tunable morphology and optical properties.


Asunto(s)
Porfirinas , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Fosfolípidos , Porfirinas/química
7.
Sci Rep ; 12(1): 7057, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488116

RESUMEN

The human SLC22A6/OAT1 plays an important role in the elimination of a broad range of endogenous substances and xenobiotics thus attracting attention from the pharmacological community. Furthermore, OAT1 is also involved in key physiological events such as the remote inter-organ communication. Despite its significance, the knowledge about hOAT1 structure and the transport mechanism at the atomic level remains fragmented owing to the lack of resolved structures. By means of protein-threading modeling refined by µs-scaled Molecular Dynamics simulations, the present study provides the first robust model of hOAT1 in outward-facing conformation. Taking advantage of the AlphaFold 2 predicted structure of hOAT1 in inward-facing conformation, we here provide the essential structural and functional features comparing both states. The intracellular motifs conserved among Major Facilitator Superfamily members create a so-called "charge-relay system" that works as molecular switches modulating the conformation. The principal element of the event points at interactions of charged residues that appear crucial for the transporter dynamics and function. Moreover, hOAT1 model was embedded in different lipid bilayer membranes highlighting the crucial structural dependence on lipid-protein interactions. MD simulations supported the pivotal role of phosphatidylethanolamine components to the protein conformation stability. The present model is made available to decipher the impact of any observed polymorphism and mutation on drug transport as well as to understand substrate binding modes.


Asunto(s)
Membrana Dobles de Lípidos , Transportadores de Anión Orgánico , Transporte Biológico , Humanos , Simulación de Dinámica Molecular , Proteína 1 de Transporte de Anión Orgánico , Conformación Proteica
8.
Liver Int ; 41(6): 1344-1357, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33650203

RESUMEN

BACKGROUND & AIM: ABCB4 is expressed at the canalicular membrane of hepatocytes. This ATP-binding cassette (ABC) transporter is responsible for the secretion of phosphatidylcholine into bile canaliculi. Missense genetic variations of ABCB4 are correlated with several rare cholestatic liver diseases, the most severe being progressive familial intrahepatic cholestasis type 3 (PFIC3). In a repurposing strategy to correct intracellularly retained ABCB4 variants, we tested 16 compounds previously validated as cystic fibrosis transmembrane conductance regulator (CFTR) correctors. METHODS: The maturation, intracellular localization and activity of intracellularly retained ABCB4 variants were analyzed in cell models after treatment with CFTR correctors. In addition, in silico molecular docking calculations were performed to test the potential interaction of CFTR correctors with ABCB4. RESULTS: We observed that the correctors C10, C13, and C17, as well as the combinations of C3 + C18 and C4 + C18, allowed the rescue of maturation and canalicular localization of four distinct traffic-defective ABCB4 variants. However, such treatments did not permit a rescue of the phosphatidylcholine secretion activity of these defective variants and were also inhibitory of the activity of wild type ABCB4. In silico molecular docking analyses suggest that these CFTR correctors might directly interact with transmembrane domains and/or ATP-binding sites of the transporter. CONCLUSION: Our results illustrate the uncoupling between the traffic and the activity of ABCB4 because the same molecules can rescue the traffic of defective variants while they inhibit the secretion activity of the transporter. We expect that this study will help to design new pharmacological tools with potential clinical interest.


Asunto(s)
Colestasis Intrahepática , Colestasis , Subfamilia B de Transportador de Casetes de Unión a ATP , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Simulación del Acoplamiento Molecular , Fosfatidilcolinas
9.
Langmuir ; 36(40): 11776-11786, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32911935

RESUMEN

Quercetin and rutin, two widely studied flavonoids with applications foreseen in the sectors of pharmaceutical and cosmetic industries, have been chosen as model compounds for a detailed structural and dynamical investigation onto their influence on fluid lipid bilayers. Combining global small angle X-ray scattering analysis with molecular dynamics, various changes in the properties of dioleoyl-phosphatidylcholine (DOPC) bilayers have been determined. The solubility of quercetin in DOPC membranes is assured up to 12 mol %, whereas rutin, with additional glucose and rhamnose groups, are fully soluble only up to 6 mol %. Both flavonoids induce an increase in membrane undulations and thin the bilayers slightly (<1 Å) in a concentration dependent manner, wherein quercetin shows a stronger effect. Concomitantly, in the order of 2-4%, the adjacent bilayer distance increases with the flavonoid's concentration. Partial molecular areas of quercetin and rutin are determined to be 26 and 51 Å2, respectively. Simulated averaged areas per molecule confirm these estimates. A 60° tilted orientation of quercetin is observed with respect to the bilayer normal, whereas the flavonoid moiety of rutin is oriented more perpendicular (α-angle 30°) to the membrane surface. Both flavonoid moieties are located at a depth of 12 and 16 Å for quercetin and rutin, respectively, while their anionic forms display a location closer to the polar interface. Finally, at both simulated concentrations (1.5 and 12 mol %), DOPC-rutin systems induce a stronger packing of the pure DOPC lipid bilayer, mainly due to stronger attractive electrostatic interactions in the polar lipid head region.

10.
FEBS J ; 287(5): 909-924, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31556966

RESUMEN

While GASP-1 and GASP-2 proteins are known to regulate myogenesis by inhibiting myostatin, their structural organization suggests a putative role as multivalent protease inhibitors controlling different protease activities. In this study, we show the noncompetitive and competitive antitrypsin activities of the full-length GASP-1 and GASP-2 proteins, respectively, by using a bacterial system production and in vitro enzymatic experiments. The role of the second Kunitz domain in this functional duality is described by assessing the antitrypsin activity of GASP-1/2 chimeric proteins. Molecular dynamics simulations support the experimental data to rationalize differences in binding modes between trypsin and the GASP-1 and GASP-2 second Kunitz domains. A new inhibition mechanism was evidenced for the second Kunitz domain of GASP-2, in which the conventional cationic residue of trypsin inhibitors was substituted by the strongly interacting glutamine residue.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Simulación de Dinámica Molecular , Animales , Diferenciación Celular/fisiología , Línea Celular , Proliferación Celular/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intracelular/química , Cinética , Ratones , Mioblastos/citología , Mioblastos/metabolismo , Estructura Secundaria de Proteína
11.
Langmuir ; 35(45): 14603-14615, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31619039

RESUMEN

ß-Lapachone (ß-Lap) is a promising anticancer drug whose applications have been limited so far because of its poor solubility and stability. Its encapsulation in liposomes has been proposed to overcome these issues. However, surface pressure measurements show that ß-Lap exhibits atypical interfacial behavior when mixed with lipids. Although the drug does not seem to be retained in lipid monolayers as deduced from the π-A isotherms, small changes in compressibility moduli suggest that ß-Lap actually interacts with lipids, either disorganizing or rigidifying their monolayers. Thermal and structural analyses of lipid bilayers confirm the existence of ß-Lap/lipid interactions and show that the drug inserts between hydrophobic chains, close to the polar headgroup in DPPC bilayers and deeper in the acyl chains in POPC bilayers. Molecular dynamics simulations allow a comprehensive description of the drug position and orientation in DOPC and POPC bilayers in the presence or absence of cholesterol.


Asunto(s)
Membrana Dobles de Lípidos/química , Naftoquinonas/química , Fosfatidilcolinas/química , Tamaño de la Partícula , Propiedades de Superficie
12.
Biochim Biophys Acta Biomembr ; 1861(8): 1489-1501, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31247162

RESUMEN

Free radical scavengers like α-phenyl-N-tert-butylnitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) have been widely used as protective agents in various biomimetic and biological models. A series of three amphiphilic Trolox and PBN derivatives have been designed by adding to those molecules a perfluorinated chain as well as a sugar group in order to render them amphiphilic. In this work, we have studied the interactions between these derivatives and lipid membranes to understand how they influence their ability to prevent membrane lipid oxidation. We showed the derivatives better inhibited the AAPH-induced oxidation of 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC) small unilamellar vesicles (SUVs) than the parent compounds. One of the derivatives, bearing both PBN and Trolox moieties on the same fluorinated carrier, exhibited a synergistic antioxidant effect by delaying the oxidation process. We next investigated the ability of the derivatives to interact with DLiPC membranes in order to better understand the differences observed regarding the antioxidant properties. Surface tension and fluorescence spectroscopy experiments revealed the derivatives exhibited the ability to form monolayers at the air/water interface and spontaneously penetrated lipid membranes, underlying pronounced hydrophobic properties in comparison to the parent compounds. We observed a correlation between the hydrophobic properties, the depth of penetration and the antioxidant properties and showed that the location of these derivatives in the membrane is a key parameter to rationalize their antioxidant efficiency. Molecular dynamics (MD) simulations supported the understanding of the mechanism of action, highlighting various key physical-chemical descriptors.


Asunto(s)
Antioxidantes/farmacología , Cromanos/química , Lípidos de la Membrana/química , Óxidos de Nitrógeno/química , Sinergismo Farmacológico , Flúor/química , Peroxidación de Lípido , Membranas Artificiales , Oxidación-Reducción
13.
J Med Chem ; 62(3): 1657-1668, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30615450

RESUMEN

Cancer cells generally possess higher levels of reactive oxygen species than normal cells, and this can serve as a possible therapeutic target. In this proof-of-concept study, an antioxidant-inspired drug discovery strategy was evaluated using a hydroxycinnamic acid derivative. The processing of oxidized mixtures of p-coumaric acid methyl ester (pcm) revealed a new antitumor lead, graviquinone. Graviquinone bypassed ABCB1-mediated resistance, induced DNA damage in lung carcinoma cells but exerted DNA protective activity in normal keratinocytes, and modulated DNA damage response in MCF-7 cells. The cytotoxic effect of pcm in MCF-7 cells was potentiated under H2O2-induced oxidative stress, and the formation of graviquinone was confirmed by Fenton's reaction on pcm. In silico density functional theory calculations suggested graviquinone as a kinetic product of pcm-scavenging •OH radicals. Our results demonstrate the pharmacological value of an in situ-formed, oxidative stress-related metabolite of an antioxidant. This might be of particular importance for designing new strategies for antioxidant-based drug discovery.


Asunto(s)
Antineoplásicos/farmacología , Ácidos Cumáricos/farmacología , Ciclohexanonas/farmacología , Depuradores de Radicales Libres/farmacología , Animales , Antineoplásicos/toxicidad , Línea Celular Tumoral , Simulación por Computador , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Ciclohexanonas/toxicidad , Daño del ADN/efectos de los fármacos , Descubrimiento de Drogas , Resistencia a Antineoplásicos/efectos de los fármacos , Depuradores de Radicales Libres/toxicidad , Humanos , Radical Hidroxilo/química , Ratones , Oxidación-Reducción , Transducción de Señal/efectos de los fármacos
14.
FASEB Bioadv ; 1(9): 561-578, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32123851

RESUMEN

Calcineurin inhibitors (CNI) are the pillars of immunosuppression in transplantation. However, they display a potent nephrotoxicity whose mechanisms remained widely unsolved. We used an untargeted quantitative proteomic approach (iTRAQ technology) to highlight new targets of CNI in renal proximal tubular cells (RPTCs). CNI-treated RPTCs proteome displayed an over-representation of actin-binding proteins with a CNI-specific expression profile. Cyclosporine A (CsA) induced F-actin remodeling and depolymerization, decreased F-actin-stabilizing, polymerization-promoting cofilin (CFL) oligomers, and inhibited the G-actin-regulated serum response factor (SRF) pathway. Inhibition of CFL canonical phosphorylation pathway reproduced CsA effects; however, S3-R, an analogue of the phosphorylation site of CFL prevented the effects of CsA which suggests that CsA acted independently from the canonical CFL regulation. CFL is known to be regulated by the Na+/K+-ATPase. Molecular docking calculations identified two inhibiting sites of CsA on Na+/K+-ATPase and a 23% decrease in Na+/K+-ATPase activity of RPTCs was observed with CsA. Ouabain, a specific inhibitor of Na+/K+-ATPase also reproduced CsA effects on actin organization and SRF activity. Altogether, these results described a new original pathway explaining CsA nephrotoxicity.

15.
Chemistry ; 24(58): 15577-15588, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30346057

RESUMEN

Metal complexes constitute an important class of DNA binders. In particular, a few ruthenium polyazaaromatic complexes are attractive as "light switches" because of their strong luminescence enhancement upon DNA binding. In this paper, a comprehensive study on the binding modes of several mononuclear and binuclear ruthenium complexes to human telomeric sequences, made of repeats of the d(TTAGGG) fragment is reported. These DNA sequences form G-quadruplexes (G4s) at the ends of chromosomes and constitute a relevant biomolecular target in cancer research. By combining spectroscopy experiments and molecular modelling simulations, several key properties are deciphered: the binding modes, the stabilization of G4 upon binding, and the selectivity of these complexes towards G4 versus double-stranded DNA. These results are rationalized by assessing the possible deformation of G4 and the binding free energies of several binding modes via modelling approaches. Altogether, this comparative study provides fundamental insights into the molecular recognition properties and selectivity of Ru complexes towards this important class of DNA G4s.


Asunto(s)
ADN/metabolismo , G-Cuádruplex , Rutenio/metabolismo , Telómero/metabolismo , Sitios de Unión , ADN/química , Humanos , Estructura Molecular , Rutenio/química , Telómero/química
16.
J Chem Theory Comput ; 14(10): 5350-5359, 2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-30216061

RESUMEN

The widespread interest in phase recognition of lipid membranes has led to the use of different optical techniques to enable differentiation of healthy and not fully functional cells. In this work, we show how the combination of different (non)linear optical methods such as one-photon absorption (OPA), two-photon absorption (TPA), and second harmonic generation (SHG) as well as the study of the fluorescence decay time leads to an enhanced screening of membrane phases using a fluorescent 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine (DiD) probe. In the current study we consider the pure liquid disordered phases of DOPC (dioleoyl- sn-glycero-3-phosphocholine, room temperature) and DPPC (1,2-dipalmitoyl- sn-glycero-3-phosphocholine, 323 K), the solid gel phase of DPPC (298 K), and the liquid ordered phase of a 2:1 binary mixture of sphingomyelin and cholesterol. By means of extensive hybrid quantum mechanics-molecular mechanics calculations and based upon the (non)linear absorption of the embedded probes, it is found that DiD can be used to identify the lipid bilayer phase. The joint TPA and SHG as well as fluorescence analyses qualifies DiD as a versatile probe for phase recognition. In particular, the SHG data obtained by means of hyper-Rayleigh scattering and by electric field induced second harmonic generation reveal differences in polarization of the probe in the different environments. The TPA results finally confirm the particular location of the probe in between the polar headgroup region of the 2:1 SM:Chol mixture in the liquid ordered phase.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Esfingomielinas/química , Fluorescencia , Colorantes Fluorescentes/química , Lípidos de la Membrana/química , Modelos Moleculares , Transición de Fase , Teoría Cuántica
17.
Int J Mol Sci ; 18(11)2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29068411

RESUMEN

Sulfated quercetin derivatives are important authentic standards for metabolic studies. Quercetin-3'-O-sulfate, quercetin-4'-O-sulfate, and quercetin-3-O-sulfate as well as quercetin-di-O-sulfate mixture (quercetin-7,3'-di-O-sulfate, quercetin-7,4'-di-O-sulfate, and quercetin-3',4'-di-O-sulfate) were synthetized by arylsulfotransferase from Desulfitobacterium hafniense. Purified monosulfates and disulfates were fully characterized using MS and NMR and tested for their 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS⁺) and N,N-dimethyl-p-phenylenediamine (DMPD) radical scavenging, Folin-Ciocalteau reduction (FCR), ferric reducing antioxidant power (FRAP), and anti-lipoperoxidant activities in rat liver microsomes damaged by tert-butylhydroperoxide. Although, as expected, the sulfated metabolites were usually less active than quercetin, they remained still effective antiradical and reducing agents. Quercetin-3'-O-sulfate was more efficient than quercetin-4'-O-sulfate in DPPH and FCR assays. In contrast, quercetin-4'-O-sulfate was the best ferric reductant and lipoperoxidation inhibitor. The capacity to scavenge ABTS+• and DMPD was comparable for all substances, except for disulfates, which were the most efficient. Quantum calculations and molecular dynamics simulations on membrane models supported rationalization of free radical scavenging and lipid peroxidation inhibition. These results clearly showed that individual metabolites of food bioactives can markedly differ in their biological activity. Therefore, a systematic and thorough investigation of all bioavailable metabolites with respect to native compounds is needed when evaluating food health benefits.


Asunto(s)
Arilsulfotransferasa/metabolismo , Quercetina/análogos & derivados , Sulfatos/síntesis química , Antioxidantes , Desulfitobacterium/enzimología , Quercetina/análisis , Quercetina/síntesis química , Quercetina/metabolismo , Relación Estructura-Actividad , Sulfatos/análisis , Sulfatos/metabolismo
18.
Chemistry ; 23(64): 16328-16337, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28872717

RESUMEN

We report on the benefits of changing the bridging group X of bis-pyridyl ligands, that is, Py-X-Py where X is NH, CH2 , C(CH3 )2 , or PPh, on the photo- and electroluminescent properties of a new family of luminescent cationic H-heterocyclic carbene (NHC) copper(I) complexes. A joint experimental and theoretical study demonstrates that the bridging group affects the molecular conformation from a planar-like structure (X is NH and CH2 ) to a boat-like structure (X is C(CH3 )2 and PPh), leading to i) four-fold enhancement of the photoluminescence quantum yield (ϕem ) without affecting the thermally activated delayed fluorescence mechanism, and ii) one order of magnitude reduction of the ionic conductivity (σ) of thin films. This leads to an overall enhancement of the device efficacy and luminance owing to the increased ϕem and the use of low applied driving currents.

19.
Phys Chem Chem Phys ; 19(18): 11460-11473, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28425533

RESUMEN

Photo-triggerable liposomes are considered nowadays as promising drug delivery devices due to their potential to release encapsulated drugs in a spatial and temporal manner. In this work, we have investigated the photopermeation efficiency of three photosensitizers (PSs), namely verteporfin, pheophorbide a and m-THPP when incorporated into liposomes with well-defined lipid compositions (SOPC, DOPC or SLPC). By changing the nature of phospholipids and PSs, the illumination of the studied systems was shown to significantly alter their lipid bilayer properties via the formation of lipid peroxides. The system efficiency depends on the PS/phospholipid association, and the ability of the PS to peroxidize acyl chains. Our results demonstrated the possible use of these three clinically approved (or under investigation) PSs as potential candidates for photo-triggerable liposome conception.


Asunto(s)
Liberación de Fármacos/efectos de la radiación , Liposomas/química , Fármacos Fotosensibilizantes/química , Clorofila/análogos & derivados , Clorofila/química , Clorofila/efectos de la radiación , Fluoresceínas/química , Colorantes Fluorescentes/química , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/efectos de la radiación , Peroxidación de Lípido/efectos de la radiación , Liposomas/efectos de la radiación , Mesoporfirinas/química , Mesoporfirinas/efectos de la radiación , Simulación de Dinámica Molecular , Permeabilidad , Fosfatidilcolinas/química , Fosfatidilcolinas/efectos de la radiación , Fármacos Fotosensibilizantes/efectos de la radiación , Porfirinas/química , Porfirinas/efectos de la radiación , Temperatura de Transición , Verteporfina
20.
Kidney Int ; 91(2): 423-434, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27773425

RESUMEN

Randall-type heavy chain deposition disease (HCDD) is a rare disorder characterized by tissue deposition of a truncated monoclonal immunoglobulin heavy chain lacking the first constant domain. Pathophysiological mechanisms are unclear and management remains to be defined. Here we retrospectively studied 15 patients with biopsy-proven HCDD of whom 14 presented with stage 3 or higher chronic kidney disease, with nephrotic syndrome in 9. Renal lesions were characterized by nodular glomerulosclerosis, with linear peritubular and glomerular deposits of γ-heavy chain in 12 patients or α-heavy chain in 3 patients, without concurrent light chain staining. Only 2 patients had symptomatic myeloma. By serum protein electrophoresis/immunofixation, 13 patients had detectable monoclonal gammopathy. However, none of these techniques allowed detection of the nephrotoxic truncated heavy chain, which was achieved by immunoblot and/or bone marrow heavy chain sequencing in 14 of 15 patients. Serum-free kappa to lambda light chain ratio was abnormal in 11 of 11 patients so examined. Immunofluorescence studies of bone marrow plasma cells showed coexpression of the pathogenic heavy chain with light chain matching the abnormal serum-free light chain in all 3 tested patients. Heavy chain sequencing showed first constant domain deletion in 11 of 11 patients, with high isoelectric point values of the variable domain in 10 of 11 patients. All patients received chemotherapy, including bortezomib in 10 cases. Renal parameters improved in 11 patients who achieved a hematological response, as assessed by normalization of the free light chain ratio in 8 cases. Tissue deposition in HCDD relates to physicochemical peculiarities of both variable and constant heavy chain domains. Early diagnosis and treatment with bortezomib-based combinations appear important to preserve renal prognosis. Thus, monitoring of serum-free light chain is an indirect but useful method to evaluate the hematological response.


Asunto(s)
Enfermedad de las Cadenas Pesadas/inmunología , Enfermedad de las Cadenas Pesadas/patología , Cadenas gamma de Inmunoglobulina/análisis , Enfermedades Renales/inmunología , Riñón/inmunología , Riñón/patología , Anciano , Anciano de 80 o más Años , Biopsia , Bortezomib/uso terapéutico , Quimioterapia Combinada , Femenino , Técnica del Anticuerpo Fluorescente , Francia , Glomerulonefritis/tratamiento farmacológico , Glomerulonefritis/inmunología , Glomerulonefritis/patología , Enfermedad de las Cadenas Pesadas/tratamiento farmacológico , Enfermedad de las Cadenas Pesadas/genética , Humanos , Cadenas alfa de Inmunoglobulina/análisis , Cadenas gamma de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/análisis , Cadenas lambda de Inmunoglobulina/análisis , Riñón/efectos de los fármacos , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Masculino , Persona de Mediana Edad , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/inmunología , Síndrome Nefrótico/patología , Paraproteinemias/tratamiento farmacológico , Paraproteinemias/inmunología , Reacción en Cadena de la Polimerasa , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/inmunología , Insuficiencia Renal Crónica/patología , Estudios Retrospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...