Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Eng Phys ; 101: 103773, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35232552

RESUMEN

NeoChord-DS1000-System (NC) and The Harpoon-Mitral-Repair-System (H-MRS) are two trans-apical chordal implantation devices developed for the treatment of degenerative mitral valve (MV) regurgitation (DMR) either if as Fibroelastic-Deficiency (FED), Forma-Frusta (FF), or Barlow (B) presentation. The aim of this study is to evaluate some of the advantages and disadvantages of these two different devices by performing numerical simulation analyses focused on different transventricular access sites in all subsets of DMR presentations. By applying a novel approach for the development of patient-specific MV domains we worked out a set of numerical simulations of the artificial chordae implantation. Different leaflet insertions and ventricle access sites were investigated, and resulting contact-area (CA), tensioning-forces (F) and leaflet's stress (LS) were calculated. The analyses showed that: i) NC-approach maintains low LS when performed with a posterior access site and optimizes the overlap between the leaflets at the systolic peak; ii) H-MRS-system presents better results in case of a more anterior ventricular entry site; however, for FED prolapse large variation of F and LS with respect to NC-approach are found; iii) an accidental contact between artificial sutures and the anterior leaflet may occur when valve function is restored through an excessive anterior access site. Present findings set light on specific technical aspects of transapical off-pump chords implantation, either performed with NC and H-MRS systems and highlight the advantages and disadvantages proper to the two devices. Our study also paves the basis for a systematic application of computational methodology, in order to plan a patient-specific mini-invasive approach thus maximizing the outcomes.


Asunto(s)
Implantación de Prótesis de Válvulas Cardíacas , Insuficiencia de la Válvula Mitral , Cuerdas Tendinosas/cirugía , Implantación de Prótesis de Válvulas Cardíacas/métodos , Humanos , Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/cirugía , Resultado del Tratamiento
2.
Bioengineering (Basel) ; 9(3)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35324783

RESUMEN

The correct estimation of the distensibility of deformable aorta replicas is a challenging issue, in particular when its local characterization is necessary. We propose a combined in-vitro and in-silico approach to face this problem. First, we tested an aortic silicone arch in a pulse-duplicator analyzing its dynamics under physiological working conditions. The aortic flow rate and pressure were measured by a flow meter at the inlet and two probes placed along the arch, respectively. Video imaging analysis allowed us to estimate the outer diameter of the aorta in some sections in time. Second, we replicated the in-vitro experiment through a Fluid-Structure Interaction simulation. Observed and computed values of pressures and variations in aorta diameters, during the cardiac cycle, were compared. Results were considered satisfactory enough to suggest that the estimation of local distensibility from in-silico tests is reliable, thus overcoming intrinsic experimental limitations. The aortic distensibility (AD) is found to vary significantly along the phantom by ranging from 3.0 × 10-3 mmHg-1 in the ascending and descending tracts to 4.2 × 10-3 mmHg-1 in the middle of the aortic arch. Interestingly, the above values underestimate the AD obtained in preliminary tests carried out on straight cylindrical samples made with the same material of the present phantom. Hence, the current results suggest that AD should be directly evaluated on the replica rather than on the samples of the adopted material. Moreover, tests should be suitably designed to estimate the local rather than only the global distensibility.

3.
Bioengineering (Basel) ; 8(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34436104

RESUMEN

(1) Background: The realization of appropriate aortic replicas for in vitro experiments requires a suitable choice of both the material and geometry. The matching between the grade of details of the geometry and the mechanical response of the materials is an open issue that deserves attention. (2) Methods: To explore this issue, we performed a series of Fluid-Structure Interaction simulations, which compared the dynamics of three aortic models. Specifically, we reproduced a patient-specific geometry with a wall of biological tissue or silicone, and a parametric geometry based on in vivo data made in silicone. The biological tissue and the silicone were modeled with a fiber-oriented anisotropic and isotropic hyperelastic model, respectively. (3) Results: Clearly, both the aorta's geometry and its constitutive material contribute to the determination of the aortic arch deformation; specifically, the parametric aorta exhibits a strain field similar to the patient-specific model with biological tissue. On the contrary, the local geometry affects the flow velocity distribution quite a lot, although it plays a minor role in the helicity along the arch. (4) Conclusions: The use of a patient-specific prototype in silicone does not a priori ensure a satisfactory reproducibility of the real aorta dynamics. Furthermore, the present simulations suggest that the realization of a simplified replica with the same compliance of the real aorta is able to mimic the overall behavior of the vessel.

4.
Med Eng Phys ; 74: 121-128, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31564499

RESUMEN

Transapical off-pump mitral valve repair with neochord implantation is an established technique for minimally-invasive intervention on mitral valve prolapse/flail. The procedure involves the positioning of artificial chords, whose length/tension is adjusted intraoperatively, adopting different methods based on the experience of the surgeon. This unsystematic approach occasionally leads to complications such as leaflet rupture and excessive/insufficient load on the neochords. In this study, finite element models of a generalized prolapsing mitral valve are used to verify the effect of two alternative tensioning approaches (AT - All together and 1-by-1 - one by one sequences) on the coaptation area and valve biomechanics, comparing results with a corresponding healthy configuration. The total force of about 1 N is exerted by the chords in both strategies, but the maximum stress and coaptation area are closer to those of the healthy configuration in the 1-by-1 sequence. However, the analysis also provides an explanation for the chords unloading in the 1-by-1 strategy observed in the clinical practice, and suggests an optimum tensioning methodology for NeoChord procedures. The study also reveals the potential power of the implemented numerical approach to serve as a tool for procedural planning, supporting the identification of the most suitable ventricular access site and the most effective stitching points for the artificial chords.


Asunto(s)
Circulación Coronaria , Válvula Mitral/fisiología , Modelos Cardiovasculares , Estrés Mecánico , Fenómenos Biomecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...