Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(2-2): 025204, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491565

RESUMEN

In this work we present the design of the first controlled fusion laboratory experiment to reach target gain G>1 N221204 (5 December 2022) [Phys. Rev. Lett. 132, 065102 (2024)10.1103/PhysRevLett.132.065102], performed at the National Ignition Facility, where the fusion energy produced (3.15 MJ) exceeded the amount of laser energy required to drive the target (2.05 MJ). Following the demonstration of ignition according to the Lawson criterion N210808, experiments were impacted by nonideal experimental fielding conditions, such as increased (known) target defects that seeded hydrodynamic instabilities or unintentional low-mode asymmetries from nonuniformities in the target or laser delivery, which led to reduced fusion yields less than 1 MJ. This Letter details design changes, including using an extended higher-energy laser pulse to drive a thicker high-density carbon (also known as diamond) capsule, that led to increased fusion energy output compared to N210808 as well as improved robustness for achieving high fusion energies (greater than 1 MJ) in the presence of significant low-mode asymmetries. For this design, the burnup fraction of the deuterium and tritium (DT) fuel was increased (approximately 4% fuel burnup and a target gain of approximately 1.5 compared to approximately 2% fuel burnup and target gain approximately 0.7 for N210808) as a result of increased total (DT plus capsule) areal density at maximum compression compared to N210808. Radiation-hydrodynamic simulations of this design predicted achieving target gain greater than 1 and also the magnitude of increase in fusion energy produced compared to N210808. The plasma conditions and hotspot power balance (fusion power produced vs input power and power losses) using these simulations are presented. Since the drafting of this manuscript, the results of this paper have been replicated and exceeded (N230729) in this design, together with a higher-quality diamond capsule, setting a new record of approximately 3.88MJ of fusion energy and fusion energy target gain of approximately 1.9.

2.
Rev Sci Instrum ; 92(4): 043712, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243490

RESUMEN

To study matter at extreme densities and pressures, we need mega laser facilities such as the National Ignition Facility as well as creative methods to make observations during timescales of a billionth of a second. To facilitate this, we developed a platform and diagnostic to characterize a new point-projection radiography configuration using two micro-wires irradiated by a short pulse laser system that provides a large field of view with up to 3.6 ns separation between images. We used tungsten-carbide solid spheres as reference objects and inferred characteristics of the back-lighter source using a forward-fitting algorithm. The resolution of the system is inferred to be 15 µm (using 12.5 µm diameter wires). The bremsstrahlung temperature of the source is 70-300 keV, depending on laser energy and coupling efficiency. By adding the images recorded on multiple stacked image plates, the signal-to-noise of the system is nearly doubled. The imaging characterization technique described here can be adapted to most point-projection platforms where the resolution, spectral contrast, and signal-to-noise are important.

3.
Phys Rev Lett ; 125(15): 155003, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33095614

RESUMEN

The implosion efficiency in inertial confinement fusion depends on the degree of stagnated fuel compression, density uniformity, sphericity, and minimum residual kinetic energy achieved. Compton scattering-mediated 50-200 keV x-ray radiographs of indirect-drive cryogenic implosions at the National Ignition Facility capture the dynamic evolution of the fuel as it goes through peak compression, revealing low-mode 3D nonuniformities and thicker fuel with lower peak density than simulated. By differencing two radiographs taken at different times during the same implosion, we also measure the residual kinetic energy not transferred to the hot spot and quantify its impact on the implosion performance.

4.
Opt Express ; 27(5): 7354-7364, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30876300

RESUMEN

We report an effect potentially harmful occurring in regenerative amplifiers due to stimulated Brillouin scattering (SBS). Most high energy laser facilities use phase-modulated pulses to prevent the transverse SBS effect in large optical components and to smooth the focal spot on target. However, this kind of pulse format may undergo a detrimental effect known as frequency modulation to amplitude modulation (FM-AM) conversion in the presence of spectral distortions. In the present letter, we show experimentally and numerically, that SBS can also potentially be created in the regenerative amplifier located in the front-end. In this scenario, some of the side bands of the pulse reflected by regen end-cavity mirror may act as a seed for SBS in an optical component, if the pulse spectrum contains frequency components exactly separated by the Brillouin frequency shift. This self-seeded SBS induces amplitude modulation with a nonlinear dependence that may be detrimental during down-stream propagation. However, we show that a careful choice of the modulation frequencies can mitigate this effect.

5.
Phys Rev Lett ; 120(8): 085001, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29543010

RESUMEN

Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...