Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 11(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35625489

RESUMEN

The causal agent of mal secco disease is the fungus Plenodomus tracheiphilus, mainly affecting lemon tree survival in the Mediterranean area. Using a fully compatible host-pathogen interaction, the aim of our work was to retrieve the fungus transcriptome by an RNA seq approach during infection of rough lemon (Citrus jambhiri Lush.) to identify crucial transcripts for pathogenesis establishment and progression. A total of 2438 clusters belonging to P. tracheiphilus were retrieved and classified into the GO and KEGG categories. Transcripts were categorized mainly within the "membrane", "catalytic activity", and "primary metabolic process" GO terms. Moreover, most of the transcripts are included in the "ribosome", "carbon metabolism", and "oxidative phosphorylation" KEGG categories. By focusing our attention on transcripts with FPKM values higher than the median, we were able to identify four main transcript groups functioning in (a) fungus cell wall remodeling and protection, (b) destroying plant defensive secondary metabolites, (c) optimizing fungus development and pathogenesis, and (d) toxin biosynthesis, thus indicating that a multifaceted strategy to subdue the host was executed.

2.
Int J Mol Sci ; 22(2)2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477297

RESUMEN

Mal secco is one of the most severe diseases of citrus, caused by the necrotrophic fungus Plenodomus tracheiphilus. With the main aim of identifying candidate genes involved in the response of citrus plants to "Mal secco", we performed a de novo transcriptome analysis of rough lemon seedlings subjected to inoculation of P. tracheiphilus. The analysis of differential expressed genes (DEGs) highlighted a sharp response triggered by the pathogen as a total of 4986 significant DEGs (2865 genes up-regulated and 2121 down-regulated) have been revealed. The analysis of the most significantly enriched KEGG pathways indicated that a crucial role is played by genes involved in "Plant hormone signal transduction", "Phenylpropanoid biosynthesis", and "Carbon metabolism". The main findings of this work are that under fungus challenge, the rough lemon genes involved both in the light harvesting and the photosynthetic electron flow were significantly down-regulated, thus probably inducing a shortage of energy for cellular functions. Moreover, the systemic acquired resistance (SAR) was activated through the induced salicylic acid cascade. Interestingly, RPM1 interacting protein 4, an essential positive regulator of plant defense, and BIR2, which is a negative regulator of basal level of immunity, have been identified thus representing useful targets for molecular breeding.


Asunto(s)
Ascomicetos/genética , Citrus/genética , Perfilación de la Expresión Génica/métodos , Micosis/genética , Fotosíntesis , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantones/metabolismo , Transcriptoma
3.
Appl Microbiol Biotechnol ; 72(5): 1054-62, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16607528

RESUMEN

In this study we examined polyhydroxyalkanoate (PHA) synthases phaC1 and phaC2 gene expression in two strains of Pseudomonas corrugata (Pc) grown in a minimum mineral medium with related (oleic acid and octanoate) or unrelated (glucose) carbon sources. Analysis of transcription was performed by Northern blot and conventional reverse transcriptase (RT) polymerase chain reaction (PCR). In addition, we developed a RT-real-time PCR method to quantitatively evaluate phaC1 (Pc) and phaC2 (Pc) gene expression. Primers and a TaqMan probe were designed for the specific detection of both synthase transcripts as well as of the housekeeping 16S rRNA, and the relative expression of target genes was calculated. We showed that phaC1 (Pc) and phaC2 (Pc) were not cotranscribed and, on the contrary, were independently regulated. In cultures grown with oleic acid as the sole carbon source, only the expression of phaC1 (Pc) was induced (a tenfold increase after 72 h of culture), whereas that of phaC2 (Pc) remained unchanged. In cultures grown with glucose or sodium octanoate, the expression of both phaC1 (Pc) and phaC2 (Pc) was upregulated but at different rates. Cellular PHA content was compared to the gene expression of the PHA synthases and significant correlations were found between PHA production and phaC1 (Pc)/phaC2 (Pc) expression.


Asunto(s)
Aciltransferasas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Pseudomonas/enzimología , Aciltransferasas/genética , Caprilatos/metabolismo , Glucosa/metabolismo , Ácido Oléico/metabolismo , ARN Ribosómico 16S/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA