Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JHEP Rep ; 6(2): 100913, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38304236

RESUMEN

Background & Aims: Hepatocellular adenomas (HCAs) are rare, benign, liver tumours classified at the clinicopathological, genetic, and proteomic levels. The ß-catenin-activated (b-HCA) subtypes harbour several mutation types in the ß-catenin gene (CTNNB1) associated with different risks of malignant transformation or bleeding. Glutamine synthetase is a surrogate marker of ß-catenin pathway activation associated with the risk of malignant transformation. Recently, we revealed an overexpression of glutamine synthetase in the rims of exon 3 S45-mutated b-HCA and exon 7/8-mutated b-HCA compared with the rest of the tumour. A difference in vascularisation was found in this rim shown by diffuse CD34 staining only at the tumour centre. Here, we aimed to characterise this tumour heterogeneity to better understand its physiopathological involvement. Methods: Using mass spectrometry imaging, genetic, and proteomic analyses combined with laser capture microdissection, we compared the tumour centre with the tumour rim and with adjacent non-tumoural tissue. Results: The tumour rim harboured the same mutation as the tumour centre, meaning both parts belong to the same tumour. Mass spectrometry imaging showed different spectral profiles between the rim and the tumour centre. Proteomic profiling revealed the significant differential expression of 40 proteins at the rim compared with the tumour centre. The majority of these proteins were associated with metabolism, with an expression profile comparable with a normal perivenous hepatocyte expression profile. Conclusions: The difference in phenotype between the tumour centres and tumour rims of exon 3 S45-mutated b-HCA and exon 7/8-mutated b-HCA does not depend on CTNNB1 mutational status. In a context of sinusoidal arterial pathology, tumour heterogeneity at the rim harbours perivenous characteristics and could be caused by a functional peripheral venous drainage. Impact and implications: Tumour heterogeneity was revealed in ß-catenin-mutated hepatocellular adenomas (b-HCAs) via the differential expression of glutamine synthase at tumour rims. The combination of several spatial approaches (mass spectrometry imaging, genetic, and proteomic analyses) after laser capture microdissection allowed identification of a potential role for peripheral venous drainage underlying this difference. Through this study, we were able to illustrate that beyond a mutational context, many factors can downstream regulate gene expression and contribute to different clinicopathological phenotypes. We believe that the combinations of spatial analyses that we used could be inspiring for all researchers wanting to access heterogeneity information of liver tumours.

2.
Cell Death Dis ; 15(1): 46, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218945

RESUMEN

Entosis is a process that leads to the formation of cell-in-cell structures commonly found in cancers. Here, we identified entosis in hepatocellular carcinoma and the loss of Rnd3 (also known as RhoE) as an efficient inducer of this mechanism. We characterized the different stages and the molecular regulators of entosis induced after Rnd3 silencing. We demonstrated that this process depends on the RhoA/ROCK pathway, but not on E-cadherin. The proteomic profiling of entotic cells allowed us to identify LAMP1 as a protein upregulated by Rnd3 silencing and implicated not only in the degradation final stage of entosis, but also in the full mechanism. Moreover, we found a positive correlation between the presence of entotic cells and the metastatic potential of tumors in human patient samples. Altogether, these data suggest the involvement of entosis in liver tumor progression and highlight a new perspective for entosis analysis in medicine research as a novel therapeutic target.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Entosis , Proteómica , Factores de Transcripción , Proteínas de Unión al GTP rho , Proteína 1 de la Membrana Asociada a los Lisosomas
3.
Nature ; 623(7986): 397-405, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914940

RESUMEN

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Asunto(s)
Encéfalo , Colesterol , Células Madre Pluripotentes Inducidas , Microglía , Células-Madre Neurales , Neurogénesis , Organoides , Animales , Humanos , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Microglía/citología , Microglía/metabolismo , Organoides/citología , Organoides/metabolismo , Colesterol/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Axones , Proliferación Celular , Ésteres/metabolismo , Gotas Lipídicas/metabolismo
4.
Sci Rep ; 12(1): 19094, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352007

RESUMEN

Antibody-mediated rejection (ABMR) is the leading cause of allograft failure in kidney transplantation. Defined by the Banff classification, its gold standard diagnosis remains a challenge, with limited inter-observer reproducibility of the histological scores and efficient immunomarker availability. We performed an immunohistochemical analysis of 3 interferon-related proteins, WARS1, TYMP and GBP1 in a cohort of kidney allograft biopsies including 17 ABMR cases and 37 other common graft injuries. Slides were interpreted, for an ABMR diagnosis, by four blinded nephropathologists and by a deep learning framework using convolutional neural networks. Pathologists identified a distinctive microcirculation staining pattern in ABMR with all three antibodies, displaying promising diagnostic performances and a substantial reproducibility. The deep learning analysis supported the microcirculation staining pattern and achieved similar diagnostic performance from internal validation, with a mean area under the receiver operating characteristic curve of 0.89 (± 0.02) for WARS1, 0.80 (± 0.04) for TYMP and 0.89 (± 0.04) for GBP1. The glomerulitis and peritubular capillaritis scores, the hallmarks of histological ABMR, were the most highly correlated Banff scores with the deep learning output, whatever the C4d status. These novel immunomarkers combined with a CNN framework could help mitigate current challenges in ABMR diagnosis and should be assessed in larger cohorts.


Asunto(s)
Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Rechazo de Injerto , Inmunohistoquímica , Microcirculación , Reproducibilidad de los Resultados , Anticuerpos , Riñón/patología , Proteínas de Unión al GTP , Timidina Fosforilasa
5.
Biomedicines ; 10(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35327371

RESUMEN

Antibody-mediated rejection (ABMR) is the leading cause of allograft failure in kidney transplantation. Its histological hallmark is represented by lesions of glomerulitis i.e., inflammatory cells within glomeruli. Current therapies for ABMR fail to prevent chronic allograft damage i.e., transplant glomerulopathy, leading to allograft loss. We used laser microdissection of glomeruli from formalin-fixed allograft biopsies combined with mass spectrometry-based proteomics to describe the proteome modification of 11 active and 10 chronic active ABMR cases compared to 8 stable graft controls. Of 1335 detected proteins, 77 were deregulated in glomerulitis compared to stable grafts, particularly involved in cellular stress mediated by interferons type I and II, leukocyte activation and microcirculation remodeling. Three proteins extracted from this protein profile, TYMP, WARS1 and GBP1, showed a consistent overexpression by immunohistochemistry in glomerular endothelial cells that may represent relevant markers of endothelial stress during active ABMR. In transplant glomerulopathy, 137 proteins were deregulated, which favor a complement-mediated mechanism, wound healing processes through coagulation activation and ultimately a remodeling of the glomerular extracellular matrix, as observed by light microscopy. This study brings novel information on glomerular proteomics of ABMR in kidney transplantation, and highlights potential targets of diagnostic and therapeutic interest.

6.
Oncogene ; 41(18): 2571-2586, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35322197

RESUMEN

Combined therapy with anti-BRAF plus anti-MEK is currently used as first-line treatment of patients with metastatic melanomas harboring the somatic BRAF V600E mutation. However, the main issue with targeted therapy is the acquisition of tumor cell resistance. In a majority of resistant melanoma cells, the resistant process consists in epithelial-to-mesenchymal transition (EMT). This process called phenotype switching makes melanoma cells more invasive. Its signature is characterized by MITF low, AXL high, and actin cytoskeleton reorganization through RhoA activation. In parallel of this phenotype switching phase, the resistant cells exhibit an anarchic cell proliferation due to hyper-activation of the MAP kinase pathway. We show that a majority of human melanoma overexpress discoidin domain receptor 2 (DDR2) after treatment. The same result was found in resistant cell lines presenting phenotype switching compared to the corresponding sensitive cell lines. We demonstrate that DDR2 inhibition induces a decrease in AXL expression and reduces stress fiber formation in resistant melanoma cell lines. In this phenotype switching context, we report that DDR2 control cell and tumor proliferation through the MAP kinase pathway in resistant cells in vitro and in vivo. Therefore, inhibition of DDR2 could be a new and promising strategy for countering this resistance mechanism.


Asunto(s)
Receptor con Dominio Discoidina 2 , Melanoma , Línea Celular Tumoral , Proliferación Celular/genética , Receptor con Dominio Discoidina 2/genética , Resistencia a Antineoplásicos/genética , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf
7.
JHEP Rep ; 3(4): 100297, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34151245

RESUMEN

BACKGROUND & AIMS: A single point mutation in the Z-variant of alpha 1-antitrypsin (Z-AAT) alone can lead to both a protein folding and trafficking defect, preventing its exit from the endoplasmic reticulum (ER), and the formation of aggregates that are retained as inclusions within the ER of hepatocytes. These defects result in a systemic AAT deficiency (AATD) that causes lung disease, whereas the ER-retained aggregates can induce severe liver injury in patients with ZZ-AATD. Unfortunately, therapeutic approaches are still limited and liver transplantation represents the only curative treatment option. To overcome this limitation, a better understanding of the molecular basis of ER aggregate formation could provide new strategies for therapeutic intervention. METHODS: Our functional and omics approaches here based on human hepatocytes from patients with ZZ-AATD have enabled the identification and characterisation of the role of the protein disulfide isomerase (PDI) A4/ERP72 in features of AATD-mediated liver disease. RESULTS: We report that 4 members of the PDI family (PDIA4, PDIA3, P4HB, and TXNDC5) are specifically upregulated in ZZ-AATD liver samples from adult patients. Furthermore, we show that only PDIA4 knockdown or alteration of its activity by cysteamine treatment can promote Z-AAT secretion and lead to a marked decrease in Z aggregates. Finally, detailed analysis of the Z-AAT interactome shows that PDIA4 silencing provides a more conducive environment for folding of the Z mutant, accompanied by reduction of Z-AAT-mediated oxidative stress, a feature of AATD-mediated liver disease. CONCLUSIONS: PDIA4 is involved in AATD-mediated liver disease and thus represents a therapeutic target for inhibition by drugs such as cysteamine. PDI inhibition therefore represents a potential therapeutic approach for treatment of AATD. LAY SUMMARY: Protein disulfide isomerase (PDI) family members, and particularly PDIA4, are upregulated and involved in alpha 1-antitrypsin deficiency (AATD)-mediated liver disease in adults. PDI inhibition upon cysteamine treatment leads to improvements in features of AATD and hence represents a therapeutic approach for treatment of AATD-mediated liver disease.

8.
Liver Int ; 41(6): 1423-1429, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33792165

RESUMEN

Previous studies have shown that Reptin is overexpressed in hepatocellular carcinoma and that it is necessary for in vitro proliferation and cell survival. However, its pathophysiological role in vivo remains unknown. We aimed to study the role of Reptin in hepatocyte proliferation after regeneration using a liver Reptin knock-out model (ReptinLKO ). Interestingly, hepatocyte proliferation is strongly impaired in ReptinLKO mice 36 h after partial hepatectomy, associated with a decrease of cyclin-A expression and mTORC1 and MAPK signalling, leading to an impaired liver regeneration. Moreover, in the ReptinLKO model, we have observed a progressive loss of Reptin invalidation associated with an atypical liver regeneration. Hypertrophic and proliferative hepatocytes gradually replace ReptinKO hypotrophic hepatocytes. To conclude, our results show that Reptin is required for hepatocyte proliferation in vivo and liver regeneration and that it plays a crucial role in hepatocyte survival and liver homeostasis.


Asunto(s)
Hepatocitos , Regeneración Hepática , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Proliferación Celular , ADN Helicasas , Hepatectomía , Homeostasis , Hígado , Ratones , Ratones Endogámicos C57BL
9.
Hepatology ; 74(3): 1595-1610, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33754354

RESUMEN

BACKGROUND AND AIMS: Through an exploratory proteomic approach based on typical hepatocellular adenomas (HCAs), we previously identified a diagnostic biomarker for a distinctive subtype of HCA with high risk of bleeding, already validated on a multicenter cohort. We hypothesized that the whole protein expression deregulation profile could deliver much more informative data for tumor characterization. Therefore, we pursued our analysis with the characterization of HCA proteomic profiles, evaluating their correspondence with the established genotype/phenotype classification and assessing whether they could provide added diagnosis and prognosis values. APPROACH AND RESULTS: From a collection of 260 cases, we selected 52 typical cases of all different subgroups on which we built a reference HCA proteomics database. Combining laser microdissection and mass-spectrometry-based proteomic analysis, we compared the relative protein abundances between tumoral (T) and nontumoral (NT) liver tissues from each patient and we defined a specific proteomic profile of each of the HCA subgroups. Next, we built a matching algorithm comparing the proteomic profile extracted from a patient with our reference HCA database. Proteomic profiles allowed HCA classification and made diagnosis possible, even for complex cases with immunohistological or genomic analysis that did not lead to a formal conclusion. Despite a well-established pathomolecular classification, clinical practices have not substantially changed and the HCA management link to the assessment of the malignant transformation risk remains delicate for many surgeons. That is why we also identified and validated a proteomic profile that would directly evaluate malignant transformation risk regardless of HCA subtype. CONCLUSIONS: This work proposes a proteomic-based machine learning tool, operational on fixed biopsies, that can improve diagnosis and prognosis and therefore patient management for HCAs.


Asunto(s)
Adenoma de Células Hepáticas/metabolismo , Neoplasias Hepáticas/metabolismo , Adenoma de Células Hepáticas/clasificación , Adenoma de Células Hepáticas/complicaciones , Adenoma de Células Hepáticas/genética , Adolescente , Adulto , Carcinogénesis , Bases de Datos Factuales , Femenino , Hemorragia/etiología , Humanos , Neoplasias Hepáticas/clasificación , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/genética , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Proteómica , Medición de Riesgo , Adulto Joven
10.
Hepatol Commun ; 4(6): 809-824, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32490318

RESUMEN

Until recently, 10% of hepatocellular adenomas (HCAs) remained unclassified (UHCA). Among the UHCAs, the sonic hedgehog HCA (shHCA) was defined by focal deletions that fuse the promoter of Inhibin beta E chain with GLI1. Prostaglandin D2 synthase was proposed as immunomarker. In parallel, our previous work using proteomic analysis showed that most UHCAs constitute a homogeneous subtype associated with overexpression of argininosuccinate synthase (ASS1). To clarify the use of ASS1 in the HCA classification and avoid misinterpretations of the immunohistochemical staining, the aims of this work were to study (1) the link between shHCA and ASS1 overexpression and (2) the clinical relevance of ASS1 overexpression for diagnosis. Molecular, proteomic, and immunohistochemical analyses were performed in UHCA cases of the Bordeaux series. The clinico-pathological features, including ASS1 immunohistochemical labeling, were analyzed on a large international series of 67 cases. ASS1 overexpression and the shHCA subgroup were superimposed in 15 cases studied by molecular analysis, establishing ASS1 overexpression as a hallmark of shHCA. Moreover, the ASS1 immunomarker was better than prostaglandin D2 synthase and only found positive in 7 of 22 shHCAs. Of the 67 UHCA cases, 58 (85.3%) overexpressed ASS1, four cases were ASS1 negative, and in five cases ASS1 was noncontributory. Proteomic analysis performed in the case of doubtful interpretation of ASS1 overexpression, especially on biopsies, can be a support to interpret such cases. ASS1 overexpression is a specific hallmark of shHCA known to be at high risk of bleeding. Therefore, ASS1 is an additional tool for HCA classification and clinical diagnosis.

11.
Front Immunol ; 10: 523, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30967864

RESUMEN

The association of immune thrombocytopenia (ITP) with cancer has been reported, but the causality of tumor cells in paraneoplastic ITP pathogenesis and maintenance has never been established. We analyzed the unusual case of refractory ITP and coincident urothelial tumor of the kidney with circulating high titer anti-GPIIBIIIA autoantibodies. Intriguingly, after nephrectomy, the patient recovered fully and her anti-GPIIBIIIA autoantibodies disappeared. Proteomic and immunohistochemistry analyses revealed erratic GPIIB expression by the tumor cells, suggesting possible antigenic mimicry chronically stimulating the immune system and leading to this patient's refractory ITP. Such previously unreported findings provide proof-of-concept that requires further confirmation with the prospective study of a larger number of patients.


Asunto(s)
Antígenos de Neoplasias/inmunología , Autoanticuerpos/inmunología , Neoplasias Renales/inmunología , Imitación Molecular , Síndromes Paraneoplásicos/inmunología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/inmunología , Púrpura Trombocitopénica Idiopática/inmunología , Antígenos de Neoplasias/sangre , Autoanticuerpos/sangre , Femenino , Humanos , Neoplasias Renales/sangre , Síndromes Paraneoplásicos/sangre , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Púrpura Trombocitopénica Idiopática/sangre
12.
Nat Commun ; 9(1): 2031, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29795195

RESUMEN

Invadosomes are F-actin-based structures involved in extracellular matrix degradation, cell invasion, and metastasis formation. Analyzing their proteome is crucial to decipher their molecular composition, to understand their mechanisms, and to find specific elements to target them. However, the specific analysis of invadosomes is challenging, because it is difficult to maintain their integrity during isolation. In addition, classical purification methods often suffer from contaminations, which may impair data validation. To ensure the specific identification of invadosome components, we here develop a method that combines laser microdissection and mass spectrometry, enabling the analysis of subcellular structures in their native state based on low amounts of input material. Using this combinatorial method, we show that invadosomes contain specific components of the translational machinery, in addition to known marker proteins. Moreover, functional validation reveals that protein translation activity is an inherent property of invadosomes, which is required to maintain invadosome structure and activity.


Asunto(s)
Podosomas/metabolismo , Biosíntesis de Proteínas , Proteómica/métodos , ARN Mensajero/metabolismo , Actinas/metabolismo , Animales , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Matriz Extracelular/metabolismo , Humanos , Captura por Microdisección con Láser/métodos , Ratones , Células 3T3 NIH , Neoplasias/diagnóstico , Neoplasias/patología , Podosomas/patología , Espectrometría de Masas en Tándem/métodos
13.
Plant Methods ; 11: 55, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26688690

RESUMEN

BACKGROUND: Despite increasing demand, imaging the internal structure of plant organs or tissues without the use of transgenic lines expressing fluorescent proteins remains a challenge. Techniques such as magnetic resonance imaging, optical projection tomography or X-ray absorption tomography have been used with various success, depending on the size and physical properties of the biological material. RESULTS: X-ray in-line phase tomography was applied for the imaging of internal structures of maize seeds at early stages of development, when the cells are metabolically fully active and water is the main cell content. This 3D imaging technique with histology-like spatial resolution is demonstrated to reveal the anatomy of seed compartments with unequalled contrast by comparison with X-ray absorption tomography. An associated image processing pipeline allowed to quantitatively segment in 3D the four compartments of the seed (embryo, endosperm, nucellus and pericarp) from 7 to 21 days after pollination. CONCLUSION: This work constitutes an innovative quantitative use of X-ray in-line phase tomography as a non-destructive fast method to perform virtual histology and extends the developmental stages accessible by this technique which had previously been applied in seed biology to more mature samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...