Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 81: 410-421, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31254622

RESUMEN

BACKGROUND: Bipolar Disorder (BD) associates with disrupted white matter (WM) microstructure and functional connectivity, and with a perturbation of the immune system. Higher cytokines, and reduced T cells, correlated with WM disruption and fMRI responses. A core component of the innate immune system, natural killer (NK) cells were detected in brain parenchyma, but never studied in BD. METHODS: We studied Diffusion Tensor Imaging (DTI) measures of water diffusion, fMRI corticolimbic functional response and connectivity, and multi-parameter cytofluorometry analysis of NK (CD56+) subpopulations, in 30 inpatients with active Bipolar Disorder type I. NK cells were also obtained in 36 healthy controls. RESULTS: Patients had significantly higher circulating counts of CD56+GMCSF+, CD56+INFγ+, and CD56+IL17+. NK cell levels positively associated to fractional anisotropy (FA) measures. CD56+TNFα+, CD56+INFγ+, and CD56+GMCSF+ directly correlated with FA, and inversely with radial (RD) and mean (MD) diffusivity. Duration of lithium treatment associated with higher CD56+TNFα+, CD56+IL2+, and CD56+IL4+, and positively associated with FA in tracts were NKs had significant effects. A mediation model suggested a partial mediation of CD56+TNFα+ cells, higher in patients on lithium, on the effects of lithium on FA. Frequencies of the same cytokine-producing NK cells also influenced fMRI cortico-limbic functional connectivity during processing of both, emotional and non-emotional stimuli. DISCUSSION: Higher circulating cytokine-producing NK cells associated with lithium treatment, and with DTI measures of WM integrity, partially mediating the effect of lithium on WM. The same cells associated with fMRI responses and connectivity, thus suggesting an effect on structural and functional connectomics in BD.


Asunto(s)
Trastorno Bipolar/inmunología , Células Asesinas Naturales/metabolismo , Sustancia Blanca/inmunología , Adulto , Anisotropía , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/metabolismo , Encéfalo/fisiopatología , Antígeno CD56/metabolismo , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Interferón gamma/análisis , Interleucina-17/análisis , Células Asesinas Naturales/fisiología , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Factor de Necrosis Tumoral alfa/análisis , Sustancia Blanca/metabolismo
2.
Microb Cell Fact ; 9: 10, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20158909

RESUMEN

BACKGROUND: The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation) is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure) via enrichment (i.e., serial growth transfers) on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures) of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. RESULTS: In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms) on Diesel (G1) and HiQ Diesel (G2), respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30 degrees C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20 degrees C for several months. CONCLUSIONS: ENZ-G1 and ENZ-G2 are very similar highly enriched consortia of bacteria and a fungus capable of extensively degrading a broad range of the hydrocarbons mainly composing diesel fuels. Given their remarkable biodegradation potential, stability and resistance to cryopreservation, both consortia appear very interesting candidates for bioaugmentation operations on Diesel fuel impacted soils and sites.


Asunto(s)
Bacterias/metabolismo , Hongos/metabolismo , Gasolina/microbiología , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Hongos/clasificación , Hongos/aislamiento & purificación , Hidrocarburos/metabolismo , Datos de Secuencia Molecular , Filogenia
3.
Microb Cell Fact ; 8: 5, 2009 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-19138404

RESUMEN

BACKGROUND: Polychlorinated biphenyls (PCBs) are widespread toxic pollutants. Bioremediation might be an effective, cost competitive and environment-friendly solution for remediating environmental matrices contaminated by PCBs but it is still unsatisfactory, mostly for the limited biodegradation potential of bacteria involved in the processes. Very little is known about mitosporic fungi potential in PCB bioremediation and their occurrence in actual site historically contaminated soils. In the present study, we characterised the native mycoflora of an aged dump site soil contaminated by about 0.9 g kg-1 of Aroclor 1260 PCBs and its changing after aerobic biotreatment with a commercial complex source of bacteria and fungi. Fungi isolated from the soil resulting from 120 days of treatment were screened for their ability to adsorb or metabolise 3 target PCBs. RESULTS: The original contaminated soil contained low loads of few fungal species mostly belonging to the Scedosporium, Penicillium and Aspergillus genera. The fungal load and biodiversity generally decreased throughout the aerobic treatment. None of the 21 strains isolated from the treated soil were able to grow on biphenyl (200 mg L-1) or a mixture of 2-chlorobiphenyl, 4,4'-dichlorobiphenyl and 2,2',5,5'-tetrachlorobiphenyl (20 mg L-1 each) as sole carbon sources. However, 16 of them grew in a mineral medium containing the same PCBs mixture and glucose (10 g L-1). Five of the 6 isolates, which displayed the faster and more extensive growth under the latter conditions, were found to degrade the 3 PCBs apparently without the involvement of ligninolytic enzymes; they were identified as Penicillium chrysogenum, Scedosporium apiospermum, Penicillium digitatum and Fusarium solani. They are the first PCB degrading strains of such species reported so far in the literature. CONCLUSION: The native mycoflora of the actual site aged heavily contaminated soil was mainly constituted by genera often reported as able to biodegrade organopollutants. It was generally remarkably reduced after the biotreatment, which however resulted in the selection of few mitosporic fungal species able to biodegrade PCBs. This is the first study in which an extensive characterisation of the cultivable indigenous mycoflora of an actual site aged PCB contaminated soil, as well as its changes upon soil bioremediation treatment, was conducted. Moreover, this is the first paper in which 5 strains ascribable to 4 mitosporic species able to biodegrade PCB are reported in the literature.

4.
Microb Cell Fact ; 5: 11, 2006 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-16549016

RESUMEN

BACKGROUND: The biotreatability of actual-site polychlorinated biphenyl (PCB)-contaminated soils is often limited by their poor content of autochthonous pollutant-degrading microorganisms. In such cases, inoculation might be the solution for a successful bioremediation. Some pure and mixed cultures of characterized PCB degrading bacteria have been tested to this purpose. However, several failures have been recorded mostly due to the inability of inoculated microbes to compete with autochthonous microflora and to face the toxicity and the scarcity of nutrients occurring in the contaminated biotope. Complex microbial systems, such as compost or sludge, normally consisting of a large variety of robust microorganisms and essential nutrients, would have better chances to succeed in colonizing degraded contaminated soils. However, such sources of microorganisms have been poorly applied in soil bioremediation and in particular in the biotreatment of soil with PCBs. Thus, in this study the effects of Enzyveba, i.e. a consortium of non-adapted microorganisms developed from composted material, on the slurry- and solid-phase aerobic bioremediation of an actual-site, aged PCB-contaminated soil were studied. RESULTS: A slow and only partial biodegradation of low-chlorinated biphenyls, along with a moderate depletion of initial soil ecotoxicity, were observed in the not-inoculated reactors. Enzyveba significantly increased the availability and the persistence of aerobic PCB- and chlorobenzoic acid-degrading cultivable bacteria in the bioreactors, in particular during the earlier phase of treatment. It also markedly enhanced PCB-biodegradation rate and extent (from 50 to 100%) as well as the final soil detoxification, in particular under slurry-phase conditions. Taken together, data obtained suggest that Enzyveba enhanced the biotreatability of the selected soil by providing exogenous bacteria and fungi able to remove inhibitory or toxic intermediates of PCB biodegradation and/or exogenous nutrients able to sustain microorganisms in charge for PCB mineralization. CONCLUSION: Enzyveba appears a promising agent for bioaugmenting actual-site PCB-polluted soils with a native low content of indigenous specialized microflora. This not only for its positive effects on the soil biotreatability but also for its availability on the market at a relatively low cost.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...