Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38587576

RESUMEN

BACKGROUND: The immediate impact of catheter ablation on left atrial mechanical function and the timeline for its recovery in patients undergoing ablation for atrial fibrillation (AF) remain uncertain. The mechanical function response to catheter ablation in patients with different AF types is poorly understood. METHODS: A total of 113 AF patients were included in this retrospective study. Each patient had three magnetic resonance imaging (MRI) studies in sinus rhythm: one pre-ablation, one immediate post-ablation (within 2 days after ablation), and one post-ablation follow-up MRI (≤ 3 months). We used feature tracking in the MRI cine images to determine peak longitudinal atrial strain (PLAS). We evaluated the change in strain from pre-ablation, immediately after ablation to post-ablation follow-up in a short-term study (< 50 days) and a 3-month study (3 months after ablation). RESULTS: The PLAS exhibited a notable reduction immediately after ablation, compared to both pre-ablation levels and those observed in follow-up studies conducted at short-term (11.1 ± 9.0 days) and 3-month (69.6 ± 39.6 days) intervals. However, there was no difference between follow-up and pre-ablation PLAS. The PLAS returned to 95% pre-ablation level within 10 days. Paroxysmal AF patients had significantly higher pre-ablation PLAS than persistent AF patients in pre-ablation MRIs. Both type AF patients had significantly lower immediate post-ablation PLAS compared with pre-ablation and post-ablation PLAS. CONCLUSION: The present study suggested a significant drop in PLAS immediately after ablation. Left atrial mechanical function recovered within 10 days after ablation. The drop in PLAS did not show a substantial difference between paroxysmal and persistent AF patients.

2.
Cardiovasc Eng Technol ; 14(1): 1-12, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35618870

RESUMEN

PURPOSE: To evaluate the agreement of 4D flow cMRI-derived bulk flow features and fluid (blood) velocities in the carotid bifurcation using prospective and retrospective gating techniques. METHODS: Prospective and retrospective ECG-gated three-dimensional (3D) cine phase-contrast cardiac MRI with three-direction velocity encoding (i.e., 4D flow cMRI) data were acquired in ten carotid bifurcations from men (n = 3) and women (n = 2) that were cardiovascular disease-free. MRI sequence parameters were held constant across all scans except temporal resolution values differed. Velocity data were extracted from the fluid domain and evaluated across the entire volume or at defined anatomic planes (common, internal, external carotid arteries). Qualitative agreement between gating techniques was performed by visualizing flow streamlines and topographical images, and statistical comparisons between gating techniques were performed across the fluid volume and defined anatomic regions. RESULTS: Agreement in the kinematic data (e.g., bulk flow features and velocity data) were observed in the prospectively and retrospectively gated acquisitions. Voxel differences in time-averaged, peak systolic, and diastolic-averaged velocity magnitudes between gating techniques across all volunteers were 2.7%, 1.2%, and 6.4%, respectively. No significant differences in velocity magnitudes or components ([Formula: see text], [Formula: see text], [Formula: see text]) were observed. Importantly, retrospective acquisitions captured increased retrograde flow in the internal carotid artery (i.e., carotid sinus) compared to prospective acquisitions (10.4 ± 6.3% vs. 4.6 ± 5.3%; [Formula: see text] < 0.05). CONCLUSION: Prospective and retrospective ECG-gated 4D flow cMRI acquisitions provide comparable evaluations of fluid velocities, including velocity vector components, in the carotid bifurcation. However, the increased temporal coverage of retrospective acquisitions depicts increased retrograde flow patterns (i.e., disturbed flow) not captured by the prospective gating technique.


Asunto(s)
Arterias Carótidas , Imagen por Resonancia Magnética , Masculino , Humanos , Femenino , Estudios Retrospectivos , Estudios Prospectivos , Velocidad del Flujo Sanguíneo , Imagen por Resonancia Magnética/métodos , Arterias Carótidas/diagnóstico por imagen , Imagenología Tridimensional/métodos , Reproducibilidad de los Resultados
3.
Med Phys ; 49(11): 6986-7000, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35703369

RESUMEN

BACKGROUND: Using the spin-lattice relaxation time (T1) as a biomarker, the myocardium can be quantitatively characterized using cardiac T1 mapping. The modified Look-Locker inversion (MOLLI) recovery sequences have become the standard clinical method for cardiac T1 mapping. However, the MOLLI sequences require an 11-heartbeat breath-hold that can be difficult for subjects, particularly during exercise or pharmacologically induced stress. Although shorter cardiac T1 mapping sequences have been proposed, these methods suffer from reduced precision. As such, there is an unmet need for accelerated cardiac T1 mapping. PURPOSE: To accelerate cardiac T1 mapping MOLLI sequences by using neural networks to estimate T1 maps using a reduced number of T1-weighted images and their corresponding inversion times. MATERIALS AND METHODS: In this retrospective study, 911 pre-contrast T1 mapping datasets from 202 subjects (128 males, 56 ± 15 years; 74 females, 54 ± 17 years) and 574 T1 mapping post-contrast datasets from 193 subjects (122 males, 57 ± 15 years; 71 females, 54 ± 17 years) were acquired using the MOLLI-5(3)3 sequence and the MOLLI-4(1)3(1)2 sequence, respectively. All acquisition protocols used similar scan parameters: T R = 2.2 ms $TR\; = \;2.2\;{\rm{ms}}$ , T E = 1.12 ms $TE\; = \;1.12\;{\rm{ms}}$ , and F A = 35 ∘ $FA\; = \;35^\circ $ , gadoteridol (ProHance, Bracco Diagnostics) dose ∼ 0.075 mmol / kg $\sim 0.075\;\;{\rm{mmol/kg}}$ . A bidirectional multilayered long short-term memory (LSTM) network with fully connected output and cyclic model-based loss was used to estimate T1 maps from the first three T1-weighted images and their corresponding inversion times for pre- and post-contrast T1 mapping. The performance of the proposed architecture was compared to the three-parameter T1 recovery model using the same reduction of the number of T1-weighted images and inversion times. Reference T1 maps were generated from the scanner using the full MOLLI sequences and the three-parameter T1 recovery model. Correlation and Bland-Altman plots were used to evaluate network performance in which each point represents averaged regions of interest in the myocardium corresponding to the standard American Heart Association 16-segment model. The precision of the network was examined using consecutively repeated scans. Stress and rest pre-contrast MOLLI studies as well as various disease test cases, including amyloidosis, hypertrophic cardiomyopathy, and sarcoidosis were also examined. Paired t-tests were used to determine statistical significance with p < 0.05 $p < 0.05$ . RESULTS: Our proposed network demonstrated similar T1 estimations to the standard MOLLI sequences (pre-contrast: 1260 ± 94 ms $1260 \pm 94\;{\rm{ms}}$ vs. 1254 ± 91 ms $1254 \pm 91\;{\rm{ms}}$ with p = 0.13 $p\; = \;0.13$ ; post-contrast: 484 ± 92 ms $484 \pm 92\;{\rm{ms}}$ vs. 493 ± 91 ms $493 \pm 91\;{\rm{ms}}$ with p = 0.07 $p\; = \;0.07$ ). The precision of standard MOLLI sequences was well preserved with the proposed network architecture ( 24 ± 28 ms $24 \pm 28\;\;{\rm{ms}}$ vs. 18 ± 13 ms $18 \pm 13\;{\rm{ms}}$ ). Network-generated T1 reactivities are similar to stress and rest pre-contrast MOLLI studies ( 5.1 ± 4.0 % $5.1 \pm 4.0\;\% $ vs. 4.9 ± 4.4 % $4.9 \pm 4.4\;\% $ with p = 0.84 $p\; = \;0.84$ ). Amyloidosis T1 maps generated using the proposed network are also similar to the reference T1 maps (pre-contrast: 1243 ± 140 ms $1243 \pm 140\;\;{\rm{ms}}$ vs. 1231 ± 137 ms $1231 \pm 137\;{\rm{ms}}$ with p = 0.60 $p\; = \;0.60$ ; post-contrast: 348 ± 26 ms $348 \pm 26\;{\rm{ms}}$ vs. 346 ± 27 ms $346 \pm 27\;{\rm{ms}}$ with p = 0.89 $p\; = \;0.89$ ). CONCLUSIONS: A bidirectional multilayered LSTM network with fully connected output and cyclic model-based loss was used to generate high-quality pre- and post-contrast T1 maps using the first three T1-weighted images and their corresponding inversion times. This work demonstrates that combining deep learning with cardiac T1 mapping can potentially accelerate standard MOLLI sequences from 11 to 3 heartbeats.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Masculino , Femenino , Humanos , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Miocardio , Fantasmas de Imagen
4.
Magn Reson Med ; 87(6): 2957-2971, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35081261

RESUMEN

PURPOSE: While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q-space data. METHODS: We implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi-compartment spherical mean technique (SMT). A per-voxel q-space deep learning (1D-qDL), a per-slice convolutional neural network (2D-CNN), and a 3D-patch-based microstructure estimation with sparse coding using a separable dictionary (MESC-SD) network are considered. RESULTS: The accuracy of estimated diffusion maps depends on the q-space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC-SD network architecture (less than 10 % normalized RMSE in most brain regions). CONCLUSION: Our experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q-space data. These methods can significantly reduce both the scan ( ∼ 6-fold) and processing times ( ∼ 25-fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy.


Asunto(s)
Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación
5.
Med Image Anal ; 70: 102000, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33676098

RESUMEN

The main goal of this work is to improve the quality of simultaneous multi-slice (SMS) reconstruction for diffusion MRI. We accomplish this by developing an image domain method that reaps the benefits of both SENSE and GRAPPA-type approaches and enables image regularization in an optimization framework. We propose a new approach termed regularized image domain split slice-GRAPPA (RI-SSG), which establishes an optimization framework for SMS reconstruction. Within this framework, we use a robust forward model to take advantage of both the SENSE model with explicit sensitivity estimations and the SSG model with implicit kernel relationship among coil images. The proposed approach also allows combining of coil images to increase the SNR and enables image domain regularization on estimated coil-combined single slices. We compare the performance of RI-SSG with that of SENSE and SSG using in-vivo diffusion EPI datasets with simulated and actual SMS acquisitions collected on a 3T MR scanner. Reconstructed diffusion-weighted images (DWIs) and the resulting diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) maps are analyzed to evaluate the quantitative and qualitative performance of the three methods. The DWIs reconstructed by RI-SSG are closer to the single-band ground truth images than SENSE and SSG. Specifically, the proposed RI-SSG reduces the normalized root-mean-square-error (nRMSE) against ground truth images by ∼5% and increases the structural similarity index (SSIM) by ∼4% compared to SSG. All three methods produce similar fractional anisotropy (FA) maps using DTI representation, but mean diffusivity (MD) and fiber orientation estimates using RI-SSG are closer to the reference than SENSE and SSG. RI-SSG results in NODDI maps with noticeably smaller errors than those of SENSE and SSG and improves the accuracy of the mean value of orientation dispersion index (ODI) by ∼5% and the mean value of intracellular volume fraction by ∼7% in regions of interest in brain white matter compared to SSG.


Asunto(s)
Artefactos , Imagen de Difusión Tensora , Algoritmos , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador
6.
Glob Cardiol Sci Pract ; 2020(3): e202038, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33598498

RESUMEN

Objective: Myocardial first-pass perfusion imaging with MRI is well-established clinically. However, it is potentially weakened by limited myocardial coverage compared to nuclear medicine. Clinical evaluations of whole-heart MRI perfusion by 3D methods, while promising, have to date had the limit of breathhold requirements at stress. This work aims to develop a new free-breathing 3D myocardial perfusion method, and to test its performance in a small patient population. Methods: This work required tolerance to respiratory motion for stress investigations, and therefore employed a "stack-of-stars" hybrid Cartesian-radial MRI acquisition method. The MRI sequence was highly optimised for rapid acquisition and combined with a compressed sensing reconstruction. Stress and rest datasets were acquired in four healthy volunteers, and in six patients with coronary artery disease (CAD), which were compared against clinical reference information. Results: This free-breathing method produced datasets that appeared consistent with clinical reference data in detecting moderate-to-strong induced perfusion abnormalities. However, the majority of the mild defects identified clinically were not detected by the method, potentially due to the presence of transient myocardial artefacts present in the images. Discussion: The feasibility of detecting CAD using this 3D first-pass perfusion sequence during free-breathing is demonstrated. Good agreement on typical moderate-to-strong CAD cases is promising, however, questions still remain on the sensitivity of the technique to milder cases.

7.
Magn Reson Med ; 83(6): 1949-1963, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31670858

RESUMEN

PURPOSE: The purpose of this study was to further develop and combine several innovative sequence designs to achieve quantitative 3D myocardial perfusion. These developments include an optimized 3D stack-of-stars readout (150 ms per beat), efficient acquisition of a 2D arterial input function, tailored saturation pulse design, and potential whole heart coverage during quantitative stress perfusion. THEORY AND METHODS: All studies were performed free-breathing on a Prisma 3T MRI scanner. Phantom validation was used to verify sequence accuracy. A total of 21 subjects (3 patients with known disease) were scanned, 12 with a rest only protocol and 9 with both stress (regadenoson) and rest protocols. First pass quantitative perfusion was performed with gadoteridol (0.075 mmol/kg). RESULTS: Implementation and quantitative perfusion results are shown for healthy subjects and subjects with known coronary disease. Average rest perfusion for the 15 included healthy subjects was 0.79 ± 0.19 mL/g/min, the average stress perfusion for 6 healthy subject studies was 2.44 ± 0.61 mL/g/min, and the average global myocardial perfusion reserve ratio for 6 healthy subjects was 3.10 ± 0.24. Perfusion deficits for 3 patients with ischemia are shown. Average resting heart rate was 59 ± 7 bpm and the average stress heart rate was 81 ± 10 bpm. CONCLUSION: This work demonstrates that a quantitative 3D myocardial perfusion sequence with the acquisition of a 2D arterial input function is feasible at high stress heart rates such as during stress. T1 values and gadolinium concentrations of the sequence match the reference standard well in a phantom, and myocardial rest and stress perfusion and myocardial perfusion reserve values are consistent with those published in literature.


Asunto(s)
Circulación Coronaria , Imagen de Perfusión Miocárdica , Algoritmos , Humanos , Imagen por Resonancia Magnética , Perfusión , Fantasmas de Imagen
8.
Magn Reson Imaging ; 66: 9-21, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31751672

RESUMEN

OBJECTIVE: To develop a kernel optimization method called coil-combined split slice-GRAPPA (CC-SSG) to improve the accuracy of the reconstructed coil-combined images for simultaneous multi-slice (SMS) diffusion weighted imaging (DWI) data. METHODS: The CC-SSG method optimizes the tuning parameters in the k-space SSG kernels to achieve an optimal trade-off between the intra-slice artifact and inter-slice leakage after the root-sum-of-squares (rSOS) coil combining of the de-aliased SMS DWI data. A detailed analysis is conducted to evaluate the contributions of the intra-slice artifact and inter-slice leakage to the total reconstruction error after coil combining. RESULTS: Comparisons of the proposed CC-SSG method with the slice-GRAPPA (SG) and split slice-GRAPPA (SSG) methods are provided using two in-vivo readout-segmented (RS) EPI datasets collected from stroke patients. The CC-SSG method demonstrates improved accuracy of the reconstructed coil-combined images and the estimated diffusion tensor imaging (DTI) maps. CONCLUSION: CC-SSG strikes a good balance between the intra-slice artifact and inter-slice leakage for rSOS coil combining, and so can yield better reconstruction performance compared to SG and SSG for rSOS reconstruction. The optimal trade-off between the two artifacts is robust to the contrast of SMS data and the choice of the coil combining method.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Algoritmos , Artefactos , Humanos , Reproducibilidad de los Resultados , Relación Señal-Ruido
9.
PLoS One ; 14(2): e0211738, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30742641

RESUMEN

PURPOSE: Dynamic contrast enhanced MRI of the heart typically acquires 2-4 short-axis (SA) slices to detect and characterize coronary artery disease. This acquisition scheme is limited by incomplete coverage of the left ventricle. We studied the feasibility of using radial simultaneous multi-slice (SMS) technique to achieve SA, 2-chamber and/or 4-chamber long-axis (2CH LA and/or 4CH LA) coverage with and without electrocardiography (ECG) gating using a motion-robust reconstruction framework. METHODS: 12 subjects were scanned at rest and/or stress, free breathing, with or without ECG gating. Multiple sets of radial SMS k-space were acquired within each cardiac cycle, and each SMS set sampled 3 parallel slices that were either SA, 2CH LA, or 4CH LA slices. The radial data was interpolated onto Cartesian space using an SMS GRAPPA operator gridding method. Self-gating and respiratory states binning of the data were done. The binning information as well as a pixel tracking spatiotemporal constrained reconstruction method were applied to obtain motion-robust image reconstructions. Reconstructions with and without the pixel tracking method were compared for signal-to-noise ratio and contrast-to-noise ratio. RESULTS: Full coverage of the heart (at least 3 SA and 3 LA slices) during the first pass of contrast at every heartbeat was achieved by using the radial SMS acquisition. The proposed pixel tracking reconstruction improves the average SNR and CNR by 21% and 30% respectively, and reduces temporal blurring for both gated and ungated acquisitions. CONCLUSION: Acquiring simultaneous multi-slice SA, 2CH LA and/or 4CH LA myocardial perfusion images in every heartbeat is feasible in both gated and ungated acquisitions. This can add confidence when detecting and characterizing coronary artery disease by revealing ischemia in different views, and by providing apical coverage that is improved relative to SA slices alone. The proposed pixel tracking framework improves the reconstruction while adding little computational cost.


Asunto(s)
Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión Miocárdica/métodos , Anciano , Técnicas de Imagen Sincronizada Cardíacas/métodos , Enfermedad Coronaria/diagnóstico , Enfermedad Coronaria/diagnóstico por imagen , Enfermedad Coronaria/fisiopatología , Electrocardiografía , Femenino , Corazón/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad
10.
Magn Reson Med ; 81(4): 2399-2411, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30426558

RESUMEN

PURPOSE: To develop a robust multidimensional deep-learning based method to simultaneously generate accurate neurite orientation dispersion and density imaging (NODDI) and generalized fractional anisotropy (GFA) parameter maps from undersampled q-space datasets for use in stroke imaging. METHODS: Traditional diffusion spectrum imaging (DSI) capable of producing accurate NODDI and GFA parameter maps requires hundreds of q-space samples which renders the scan time clinically untenable. A convolutional neural network (CNN) was trained to generated NODDI and GFA parameter maps simultaneously from 10× undersampled q-space data. A total of 48 DSI scans from 15 stroke patients and 14 normal subjects were acquired for training, validating, and testing this method. The proposed network was compared to previously proposed voxel-wise machine learning based approaches for q-space imaging. Network-generated images were used to predict stroke functional outcome measures. RESULTS: The proposed network achieves significant performance advantages compared to previously proposed machine learning approaches, showing significant improvements across image quality metrics. Generating these parameter maps using CNNs also comes with the computational benefits of only needing to generate and train a single network instead of multiple networks for each parameter type. Post-stroke outcome prediction metrics do not appreciably change when using images generated from this proposed technique. Over three test participants, the predicted stroke functional outcome scores were within 1-6% of the clinical evaluations. CONCLUSIONS: Estimates of NODDI and GFA parameters estimated simultaneously with a deep learning network from highly undersampled q-space data were improved compared to other state-of-the-art methods providing a 10-fold reduction scan time compared to conventional methods.


Asunto(s)
Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética , Redes Neurales de la Computación , Neuritas/metabolismo , Accidente Cerebrovascular/diagnóstico por imagen , Anciano , Algoritmos , Anisotropía , Encéfalo/diagnóstico por imagen , Isquemia Encefálica/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Pronóstico , Reproducibilidad de los Resultados , Resultado del Tratamiento
11.
Magn Reson Med ; 79(5): 2745-2751, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28921631

RESUMEN

PURPOSE: To validate an optimal 12-fold accelerated real-time cine MRI pulse sequence with radial k-space sampling and compressed sensing (CS) in patients at 1.5T and 3T. METHODS: We used two strategies to reduce image artifacts arising from gradient delays and eddy currents in radial k-space sampling with balanced steady-state free precession readout. We validated this pulse sequence against a standard breath-hold cine sequence in two patient cohorts: a myocardial infarction (n = 16) group at 1.5T and chronic kidney disease group (n = 18) at 3T. Two readers independently performed visual analysis of 68 cine sets in four categories (myocardial definition, temporal fidelity, artifact, noise) on a 5-point Likert scale (1 = nondiagnostic, 2 = poor, 3 = adequate or moderate, 4 = good, 5 = excellent). Another reader calculated left ventricular (LV) functional parameters, including ejection fraction. RESULTS: Compared with standard cine, real-time cine produced nonsignificantly different visually assessed scores, except for the following categories: 1) temporal fidelity scores were significantly lower (P = 0.013) for real-time cine at both field strengths, 2) artifacts scores were significantly higher (P = 0.013) for real-time cine at both field strengths, and 3) noise scores were significantly (P = 0.013) higher for real-time cine at 1.5T. Standard and real-time cine pulse sequences produced LV functional parameters that were in good agreement (e.g., absolute mean difference in ejection fraction <4%). CONCLUSION: This study demonstrates that an optimal 12-fold, accelerated, real-time cine MRI pulse sequence using radial k-space sampling and CS produces good to excellent visual scores and relatively accurate LV functional parameters in patients at 1.5T and 3T. Magn Reson Med 79:2745-2751, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Algoritmos , Corazón/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Magn Reson Med ; 80(1): 286-293, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29193380

RESUMEN

PURPOSE: Golden-angle radial sparse parallel (GRASP) MRI reconstruction requires gridding and regridding to transform data between radial and Cartesian k-space. These operations are repeatedly performed in each iteration, which makes the reconstruction computationally demanding. This work aimed to accelerate GRASP reconstruction using self-calibrating GRAPPA operator gridding (GROG) and to validate its performance in clinical imaging. METHODS: GROG is an alternative gridding approach based on parallel imaging, in which k-space data acquired on a non-Cartesian grid are shifted onto a Cartesian k-space grid using information from multicoil arrays. For iterative non-Cartesian image reconstruction, GROG is performed only once as a preprocessing step. Therefore, the subsequent iterative reconstruction can be performed directly in Cartesian space, which significantly reduces computational burden. Here, a framework combining GROG with GRASP (GROG-GRASP) is first optimized and then compared with standard GRASP reconstruction in 22 prostate patients. RESULTS: GROG-GRASP achieved approximately 4.2-fold reduction in reconstruction time compared with GRASP (∼333 min versus ∼78 min) while maintaining image quality (structural similarity index ≈ 0.97 and root mean square error ≈ 0.007). Visual image quality assessment by two experienced radiologists did not show significant differences between the two reconstruction schemes. With a graphics processing unit implementation, image reconstruction time can be further reduced to approximately 14 min. CONCLUSION: The GRASP reconstruction can be substantially accelerated using GROG. This framework is promising toward broader clinical application of GRASP and other iterative non-Cartesian reconstruction methods. Magn Reson Med 80:286-293, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Anciano , Algoritmos , Calibración , Medios de Contraste , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Fantasmas de Imagen , Radiología , Cintigrafía , Estudios Retrospectivos , Programas Informáticos
13.
Artículo en Inglés | MEDLINE | ID: mdl-29276628

RESUMEN

In cardiac perfusion imaging, choice of flip angle is an important factor for steady state acquisition. This work focuses on presenting an analytical framework for understanding how non-ideal slice excitation profiles affect contrast in ungated 2D steady state cardiac perfusion studies, and to study a technique for estimating flip angle that maximizes enhanced/unenhanced myocardial contrast-to-noise ratio (CNR) in single slice and multi-slice acquisitions. A numerical simulation of ungated 2D golden ratio radial spoiled gradient echo (SPGR) was created that takes into consideration the actual (Bloch simulated) slice excitation profile. The effect of slice excitation profile on myocardial CNR as a function of flip angle was assessed in phantoms and in-vivo. For fast RF pulses, the flip angle that yields maximum CNR (considering the actual slice excitation profile) was considerably higher than expected, assuming an ideal excitation. The simulation framework presented accurately predicts the flip angle yielding maximum CNR when the actual slice excitation profile is taken into consideration. The prescribed flip angle for optimal contrast in ungated 2D steady-state SPGR cardiac perfusion studies can vary significantly from that calculated when an ideal slice excitation profile is assumed. Consideration of the actual slice excitation can yield a more optimal flip angle estimate in both the single slice and multi-slice cases.

14.
Magn Reson Imaging ; 34(9): 1329-1336, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27502698

RESUMEN

OBJECTIVE: Simultaneous multi-slice (SMS) imaging is a slice acceleration technique that acquires multiple slices in the same time as a single slice. Radial controlled aliasing in parallel imaging results in higher acceleration (radial CAIPIRINHA or CAIPI) is a promising SMS method with less severe slice aliasing artifacts as compared to its Cartesian counterpart. Here we use radial CAIPI with data undersampling and constrained reconstruction to improve the utility of ungated cardiac perfusion acquisitions. We test the proposed framework with a traditional saturation recovery fast low-angle shot (turboFLASH) sequence and also without saturation recovery as a steady-state spoiled gradient echo (SPGR) sequence on animal and human studies. METHODS: Simulations and phantom studies were performed for both the turboFLASH and the SPGR radial CAIPI methods. Ungated undersampled golden ratio radial CAIPI data with saturation recovery were acquired in 8 dogs and 2 human subjects. The CAIPI data without saturation pulses were acquired in 4 human subjects. For both methods, slice acceleration factors of two and three were used. A new spatio-temporal reconstruction using total variation and patch-based low rank constraints was used to jointly reconstruct the multi-slice multi-coil images. RESULTS: Phantom scans and computer simulations showed that ungated SPGR generally provides better contrast to noise ratio (CNR) than the saturation recovery sequence if the saturation recovery time is less than 100ms. Both of the ungated radial CAIPI methods demonstrated promising image quality in terms of preserving dynamics of the contrast agent and maintaining anatomical structures, even with three slices acquired simultaneously. CONCLUSION: Ungated simultaneous multi-slice acquisitions with either a saturation recovery turboFLASH sequence or a steady-state gradient echo SPGR sequence are feasible and provide increased slice coverage without loss of temporal resolution. Compared with a sensitivity encoding (SENSE) SMS reconstruction, the constrained reconstruction method provides better image quality for undersampled radial CAIPI data.


Asunto(s)
Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/fisiología , Corazón/diagnóstico por imagen , Corazón/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Animales , Simulación por Computador , Perros , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Fantasmas de Imagen
15.
Med Image Anal ; 26(1): 316-31, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26606457

RESUMEN

Diffusion magnetic resonance imaging (dMRI) is the modality of choice for investigating in-vivo white matter connectivity and neural tissue architecture of the brain. The diffusion-weighted signal in dMRI reflects the diffusivity of water molecules in brain tissue and can be utilized to produce image-based biomarkers for clinical research. Due to the constraints on scanning time, a limited number of measurements can be acquired within a clinically feasible scan time. In order to reconstruct the dMRI signal from a discrete set of measurements, a large number of algorithms have been proposed in recent years in conjunction with varying sampling schemes, i.e., with varying b-values and gradient directions. Thus, it is imperative to compare the performance of these reconstruction methods on a single data set to provide appropriate guidelines to neuroscientists on making an informed decision while designing their acquisition protocols. For this purpose, the SPArse Reconstruction Challenge (SPARC) was held along with the workshop on Computational Diffusion MRI (at MICCAI 2014) to validate the performance of multiple reconstruction methods using data acquired from a physical phantom. A total of 16 reconstruction algorithms (9 teams) participated in this community challenge. The goal was to reconstruct single b-value and/or multiple b-value data from a sparse set of measurements. In particular, the aim was to determine an appropriate acquisition protocol (in terms of the number of measurements, b-values) and the analysis method to use for a neuroimaging study. The challenge did not delve on the accuracy of these methods in estimating model specific measures such as fractional anisotropy (FA) or mean diffusivity, but on the accuracy of these methods to fit the data. This paper presents several quantitative results pertaining to each reconstruction algorithm. The conclusions in this paper provide a valuable guideline for choosing a suitable algorithm and the corresponding data-sampling scheme for clinical neuroscience applications.


Asunto(s)
Algoritmos , Encéfalo/anatomía & histología , Imagen de Difusión Tensora/instrumentación , Imagen de Difusión Tensora/métodos , Interpretación de Imagen Asistida por Computador/métodos , Sustancia Blanca/anatomía & histología , Humanos , Aumento de la Imagen/métodos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
J Cardiovasc Magn Reson ; 17: 68, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26231784

RESUMEN

A comprehensive review is undertaken of the methods available for 3D whole-heart first-pass perfusion (FPP) and their application to date, with particular focus on possible acceleration techniques. Following a summary of the parameters typically desired of 3D FPP methods, the review explains the mechanisms of key acceleration techniques and their potential use in FPP for attaining 3D acquisitions. The mechanisms include rapid sequences, non-Cartesian k-space trajectories, reduced k-space acquisitions, parallel imaging reconstructions and compressed sensing. An attempt is made to explain, rather than simply state, the varying methods with the hope that it will give an appreciation of the different components making up a 3D FPP protocol. Basic estimates demonstrating the required total acceleration factors in typical 3D FPP cases are included, providing context for the extent that each acceleration method can contribute to the required imaging speed, as well as potential limitations in present 3D FPP literature. Although many 3D FPP methods are too early in development for the type of clinical trials required to show any clear benefit over current 2D FPP methods, the review includes the small but growing quantity of clinical research work already using 3D FPP, alongside the more technical work. Broader challenges concerning FPP such as quantitative analysis are not covered, but challenges with particular impact on 3D FPP methods, particularly with regards to motion effects, are discussed along with anticipated future work in the field.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico , Circulación Coronaria , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión Miocárdica/métodos , Animales , Artefactos , Enfermedad de la Arteria Coronaria/fisiopatología , Humanos , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
17.
Med Phys ; 42(8): 4734-44, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26233201

RESUMEN

PURPOSE: To improve rank constrained reconstructions for undersampled multi-image MRI acquisitions. METHODS: Motivated by the recent developments in low-rank matrix completion theory and its applicability to rapid dynamic MRI, a new reordering-based rank constrained reconstruction of undersampled multi-image data that uses prior image information is proposed. Instead of directly minimizing the nuclear norm of a matrix of estimated images, the nuclear norm of reordered matrix values is minimized. The reordering is based on the prior image estimates. The method is tested on brain diffusion imaging data and dynamic contrast enhanced myocardial perfusion data. RESULTS: Good quality images from data undersampled by a factor of three for diffusion imaging and by a factor of 3.5 for dynamic cardiac perfusion imaging with respiratory motion were obtained. Reordering gave visually improved image quality over standard nuclear norm minimization reconstructions. Root mean squared errors with respect to ground truth images were improved by ∼18% and ∼16% with reordering for diffusion and perfusion applications, respectively. CONCLUSIONS: The reordered low-rank constraint is a way to inject prior image information that offers improvements over a standard low-rank constraint for undersampled multi-image MRI reconstructions.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Simulación por Computador , Conjuntos de Datos como Asunto , Cabeza/anatomía & histología , Humanos , Método de Montecarlo , Movimiento (Física) , Imagen de Perfusión Miocárdica/métodos , Respiración
18.
IEEE Trans Med Imaging ; 34(9): 1843-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25775486

RESUMEN

Motion of the heart has complicated in vivo applications of cardiac diffusion MRI and diffusion tensor imaging (DTI), especially in small animals such as rats where ultra-high-performance gradient sets are currently not available. Even with velocity compensation via, for example, bipolar encoding pulses, the variable shot-to-shot residual motion-induced spin phase can still give rise to pronounced artifacts. This study presents diffusion-encoding schemes that are designed to compensate for higher-order motion components, including acceleration and jerk, which also have the desirable practical features of minimal TEs and high achievable b-values. The effectiveness of these schemes was verified numerically on a realistic beating heart phantom, and demonstrated empirically with in vivo cardiac diffusion MRI in rats. Compensation for acceleration, and lower motion components, was found to be both necessary and sufficient for obtaining diffusion-weighted images of acceptable quality and SNR, which yielded the first in vivo cardiac DTI demonstrated in the rat. These findings suggest that compensation for higher order motion, particularly acceleration, can be an effective alternative solution to high-performance gradient hardware for improving in vivo cardiac DTI.


Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Presión Sanguínea/fisiología , Corazón/anatomía & histología , Corazón/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
19.
NMR Biomed ; 27(2): 175-82, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24259281

RESUMEN

Electrocardiogram (ECG)-gated breath-hold cine MRI is considered to be the gold standard test for the assessment of cardiac function. However, it may fail in patients with arrhythmia, impaired breath-hold capacity and poor ECG gating. Although ungated real-time cine MRI may mitigate these problems, commercially available real-time cine MRI pulse sequences using parallel imaging typically yield relatively poor spatiotemporal resolution because of their low image acquisition efficiency. As an extension of our previous work, the purpose of this study was to evaluate the diagnostic quality and accuracy of eight-fold-accelerated real-time cine MRI with compressed sensing (CS) for the quantification of cardiac function in tachycardia, where it is challenging for real-time cine MRI to provide sufficient spatiotemporal resolution. We evaluated the performances of eight-fold-accelerated cine MRI with CS, three-fold-accelerated real-time cine MRI with temporal generalized autocalibrating partially parallel acquisitions (TGRAPPA) and ECG-gated breath-hold cine MRI in 21 large animals with tachycardia (mean heart rate, 104 beats per minute) at 3T. For each cine MRI method, two expert readers evaluated the diagnostic quality in four categories (image quality, temporal fidelity of wall motion, artifacts and apparent noise) using a Likert scale (1-5, worst to best). One reader evaluated the left ventricular functional parameters. The diagnostic quality scores were significantly different between the three cine pulse sequences, except for the artifact level between CS and TGRAPPA real-time cine MRI. Both ECG-gated breath-hold cine MRI and eight-fold accelerated real-time cine MRI yielded all four scores of ≥ 3.0 (acceptable), whereas three-fold-accelerated real-time cine MRI yielded all scores below 3.0, except for artifact (3.0). The left ventricular ejection fraction (LVEF) measurements agreed better between ECG-gated cine MRI and eight-fold-accelerated real-time cine MRI (mean difference, -1.6%) than between ECG-gated cine MRI and three-fold-accelerated real-time cine MRI (mean difference, -5.7%). Eight-fold-accelerated real-time cine MRI with CS yields acceptable diagnostic quality and relatively accurate LVEF measurements in the challenging setting of tachycardia.


Asunto(s)
Algoritmos , Técnicas de Imagen Sincronizada Cardíacas/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Taquicardia Ventricular/diagnóstico , Disfunción Ventricular Izquierda/diagnóstico , Animales , Sistemas de Computación , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Taquicardia Ventricular/complicaciones , Disfunción Ventricular Izquierda/etiología
20.
Magn Reson Med ; 71(2): 645-60, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23508781

RESUMEN

PURPOSE: To develop a sensitivity-based parallel imaging reconstruction method to reconstruct iteratively both the coil sensitivities and MR image simultaneously based on their prior information. METHODS: Parallel magnetic resonance imaging reconstruction problem can be formulated as a multichannel sampling problem where solutions are sought analytically. However, the channel functions given by the coil sensitivities in parallel imaging are not known exactly and the estimation error usually leads to artifacts. In this study, we propose a new reconstruction algorithm, termed Sparse BLind Iterative Parallel, for blind iterative parallel imaging reconstruction using compressed sensing. The proposed algorithm reconstructs both the sensitivity functions and the image simultaneously from undersampled data. It enforces the sparseness constraint in the image as done in compressed sensing, but is different from compressed sensing in that the sensing matrix is unknown and additional constraint is enforced on the sensitivities as well. Both phantom and in vivo imaging experiments were carried out with retrospective undersampling to evaluate the performance of the proposed method. RESULTS: Experiments show improvement in Sparse BLind Iterative Parallel reconstruction when compared with Sparse SENSE, JSENSE, IRGN-TV, and L1-SPIRiT reconstructions with the same number of measurements. CONCLUSION: The proposed Sparse BLind Iterative Parallel algorithm reduces the reconstruction errors when compared to the state-of-the-art parallel imaging methods.


Asunto(s)
Encéfalo/anatomía & histología , Compresión de Datos/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Humanos , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...