Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 3010, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321224

RESUMEN

Activated microglia have been implicated in the pathogenesis of age-related macular degeneration (AMD), diabetic retinopathy, and other neurodegenerative and neuroinflammatory disorders, but our understanding of the mechanisms behind their activation is in infant stages. With the goal of identifying novel genes associated with microglial activation in the retina, we applied a semiquantitative fundus spot scoring scale to an unbiased, state-of-the-science mouse forward genetics pipeline. A mutation in the gene encoding the E3 ubiquitin ligase Herc3 led to prominent accumulation of fundus spots. CRISPR mutagenesis was used to generate Herc3-/- mice, which developed prominent accumulation of fundus spots and corresponding activated Iba1 + /CD16 + subretinal microglia, retinal thinning on OCT and histology, and functional deficits by Optomotory and electrophysiology. Bulk RNA sequencing identified activation of inflammatory pathways and differentially expressed genes involved in the modulation of microglial activation. Thus, despite the known expression of multiple E3 ubiquitin ligases in the retina, we identified a non-redundant role for Herc3 in retinal homeostasis. Our findings are significant given that a dysregulated ubiquitin-proteasome system (UPS) is important in prevalent retinal diseases, in which activated microglia appear to play a role. This association between Herc3 deficiency, retinal microglial activation and retinal degeneration merits further study.


Asunto(s)
Microglía , Degeneración Retiniana , Animales , Humanos , Ratones , Microglía/metabolismo , Retina/patología , Degeneración Retiniana/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
2.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168310

RESUMEN

Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy (ML/DHRD) is an age-related macular degeneration (AMD)-like retinal dystrophy caused by an autosomal dominant R345W mutation in the secreted glycoprotein, fibulin-3 (F3). To identify new small molecules that reduce F3 production from retinal pigmented epithelium (RPE) cells, we knocked-in a luminescent peptide tag (HiBiT) into the endogenous F3 locus which enabled simple, sensitive, and high throughput detection of the protein. The GSK3 inhibitor, CHIR99021 (CHIR), significantly reduced F3 burden (expression, secretion, and intracellular levels) in immortalized RPE and non-RPE cells. Low-level, long-term CHIR treatment promoted remodeling of the RPE extracellular matrix (ECM), reducing sub-RPE deposit-associated proteins (e.g., amelotin, complement component 3, collagen IV, and fibronectin), while increasing RPE differentiation factors (e.g., tyrosinase, and pigment epithelium derived factor). In vivo, treatment of 8 mo R345W+/+ knockin mice with CHIR (25 mg/kg i.p., 1 mo) was well tolerated and significantly reduced R345W F3-associated AMD-like basal laminar deposit number and size, thereby preventing the main pathological feature in these mice. This is the first demonstration of small molecule-based prevention of AMD-like pathology in ML/DHRD mice and may herald a rejuvenation of interest in GSK3 inhibition for the treatment of neurodegenerative diseases, including, potentially AMD itself.

3.
Hum Mutat ; 43(12): 1945-1955, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35998264

RESUMEN

Fibulin-3 (F3 or EFEMP1) is a disulfide-rich, secreted glycoprotein necessary for maintaining extracellular matrix (ECM) and connective tissue integrity. Three studies have identified distinct autosomal recessive F3 mutations in individuals with Marfan Syndrome-like phenotypes. Herein, we characterize how one of these mutations, c.163T>C; p.Cys55Arg (C55R), disrupts F3 secretion, quaternary structure, and function by forming unique extracellular disulfide-linked homodimers. Dual cysteine mutants suggest that the C55R-induced disulfide species forms because of the new availability of Cys70 on adjacent F3 monomers. Surprisingly, mutation of single cysteines located near Cys55 (i.e., Cys29, Cys42, Cys48, Cys61, Cys70, Cys159, and Cys171) also produced similar extracellular disulfide-linked dimers, suggesting that this is not a phenomenon isolated to the C55R mutant. To assess C55R functionality, F3 knockout (KO) retinal pigmented epithelial (RPE) cells were generated, followed by reintroduction of wild-type (WT) or C55R F3. F3 KO cells produced lower levels of the ECM remodeling enzyme, matrix metalloproteinase 2, and reduced formation of collagen VI ECM filaments, both of which were partially rescued by WT F3 overexpression. However, C55R F3 was unable to compensate for these same ECM-related defects. Our results highlight the unique behavior of particular cysteine mutations in F3 and uncover potential routes to restore C55R F3 loss-of-function.


Asunto(s)
Cisteína , Disulfuros , Humanos , Cisteína/genética , Metaloproteinasa 2 de la Matriz/genética , Proteínas de la Matriz Extracelular/genética , Matriz Extracelular/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...