Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461590

RESUMEN

APOBEC mutagenesis is one of the most common endogenous sources of mutations in human cancer and is a major source of genetic intratumor heterogeneity. High levels of APOBEC mutagenesis are associated with poor prognosis and aggressive disease across diverse cancers, but the mechanistic and functional impacts of APOBEC mutagenesis on tumor evolution and therapy resistance remain relatively unexplored. To address this, we investigated the contribution of APOBEC mutagenesis to acquired therapy resistance in a model of EGFR-mutant non-small cell lung cancer. We find that inhibition of EGFR in lung cancer cells leads to a rapid and pronounced induction of APOBEC3 expression and activity. Functionally, APOBEC expression promotes the survival of drug-tolerant persister cells (DTPs) following EGFR inhibition. Constitutive expression of APOBEC3B alters the evolutionary trajectory of acquired resistance to the EGFR inhibitor gefitinib, making it more likely that resistance arises through de novo acquisition of the T790M gatekeeper mutation and squamous transdifferentiation during the DTP state. APOBEC3B expression is associated with increased expression of the squamous cell transcription factor ΔNp63 and squamous cell transdifferentiation in gefitinib-resistant cells. Knockout of ΔNp63 in gefitinibresistant cells reduces the expression of the p63 target genes IL1a/b and sensitizes these cells to the thirdgeneration EGFR inhibitor osimertinib. These results suggest that APOBEC activity promotes acquired resistance by facilitating evolution and transdifferentiation in DTPs, and suggest that approaches to target ΔNp63 in gefitinib-resistant lung cancers may have therapeutic benefit.

2.
Curr Protoc ; 2(3): e377, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35255200

RESUMEN

Murine tumor modeling is fundamental for the preclinical development of anti-cancer therapies. Use of immunocompetent mouse models is becoming increasingly relevant as we gain more knowledge of how cancer cells interact with the immune system in the tumor microenvironment and how we can harness the immune system to fight tumors. However, there are few intrinsically immunogenic preclinical tumor models, and the vast majority either do not respond to therapy or do not faithfully predict the responses of the therapy when applied in the clinic. Here, we discuss the limitations of commonly used murine tumor models in immuno-oncology and strategies to improve their immunogenicity and mutational burden to more accurately reflect the heterogeneity of patient tumors. © 2022 Wiley Periodicals LLC.


Asunto(s)
Inmunoterapia , Neoplasias , Animales , Modelos Animales de Enfermedad , Humanos , Oncología Médica , Ratones , Neoplasias/terapia , Microambiente Tumoral
3.
Cancer Immunol Res ; 10(1): 70-86, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34795033

RESUMEN

The APOBEC family of cytidine deaminases is one of the most common endogenous sources of mutations in human cancer. Genomic studies of tumors have found that APOBEC mutational signatures are enriched in the HER2 subtype of breast cancer and are associated with immunotherapy response in diverse cancer types. However, the direct consequences of APOBEC mutagenesis on the tumor immune microenvironment have not been thoroughly investigated. To address this, we developed syngeneic murine mammary tumor models with inducible expression of APOBEC3B. We found that APOBEC activity induced antitumor adaptive immune responses and CD4+ T cell-mediated, antigen-specific tumor growth inhibition. Although polyclonal APOBEC tumors had a moderate growth defect, clonal APOBEC tumors were almost completely rejected, suggesting that APOBEC-mediated genetic heterogeneity limits antitumor adaptive immune responses. Consistent with the observed immune infiltration in APOBEC tumors, APOBEC activity sensitized HER2-driven breast tumors to anti-CTLA-4 checkpoint inhibition and led to a complete response to combination anti-CTLA-4 and anti-HER2 therapy. In human breast cancers, the relationship between APOBEC mutagenesis and immunogenicity varied by breast cancer subtype and the frequency of subclonal mutations. This work provides a mechanistic basis for the sensitivity of APOBEC tumors to checkpoint inhibitors and suggests a rationale for using APOBEC mutational signatures and clonality as biomarkers predicting immunotherapy response in HER2-positive (HER2+) breast cancers.


Asunto(s)
Desaminasas APOBEC/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Inmunoterapia/métodos , Linfocitos T/inmunología , Desaminasas APOBEC/inmunología , Animales , Antígenos de Neoplasias , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutagénesis/inmunología , Mutación , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Elife ; 82019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30990165

RESUMEN

Over half of breast-cancer-related deaths are due to recurrence 5 or more years after initial diagnosis and treatment. This latency suggests that a population of residual tumor cells can survive treatment and persist in a dormant state for many years. The role of the microenvironment in regulating the survival and proliferation of residual cells following therapy remains unexplored. Using a conditional mouse model for Her2-driven breast cancer, we identify interactions between residual tumor cells and their microenvironment as critical for promoting tumor recurrence. Her2 downregulation leads to an inflammatory program driven by TNFα/NFκB signaling, which promotes immune cell infiltration in regressing and residual tumors. The cytokine CCL5 is elevated following Her2 downregulation and remains high in residual tumors. CCL5 promotes tumor recurrence by recruiting CCR5-expressing macrophages, which may contribute to collagen deposition in residual tumors. Blocking this TNFα-CCL5-macrophage axis may be efficacious in preventing breast cancer recurrence.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Quimiocina CCL5/metabolismo , Animales , Modelos Animales de Enfermedad , Macrófagos/inmunología , Ratones , Neoplasia Residual/fisiopatología , Receptor ErbB-2/metabolismo , Recurrencia , Factor de Necrosis Tumoral alfa/metabolismo
5.
PLoS One ; 12(5): e0177310, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28545100

RESUMEN

The global health community is beginning to understand the burden of norovirus-associated disease, which has a significant impact in both developed and developing countries. Norovirus virus like particle (VLP)-based vaccines are currently under development and have been shown to elicit systemic and mucosal immune responses when delivered intranasally. In the present study, we describe the use of a dry powder formulation (GelVac™) with an in situ gelling polysaccharide (GelSite™) extracted from Aloe vera for nasal delivery of a bivalent vaccine formulation containing both GI and GII.4 norovirus VLPs. Dose-ranging studies were performed to identify the optimal antigen dosages based on systemic and mucosal immune responses in guinea pigs and determine any antigenic interference. A dose-dependent increase in systemic and mucosal immunogenicity against each of the VLPs were observed as well as a boosting effect for each VLP after the second dosing. A total antigen dose of ≥50 µg of each GI and GII.4 VLPs was determined to be the maximally immunogenic dose in guinea pigs. The immunogenicity results of this bivalent formulation, taken together with previous work on monovalent GelVac™ norovirus vaccine formulation, provides a basis for future development of this norovirus VLP vaccine.


Asunto(s)
Norovirus/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/química , Vacunas Virales/inmunología , Administración Intranasal , Aloe/química , Animales , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/prevención & control , Relación Dosis-Respuesta a Droga , Femenino , Geles/química , Cobayas , Inmunidad Mucosa , Pruebas de Neutralización , Norovirus/patogenicidad , Polvos/química
6.
Vaccine ; 34(12): 1452-8, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26873053

RESUMEN

Norovirus is the primary cause of viral gastroenteritis in humans with multiple genotypes currently circulating worldwide. The development of a successful norovirus vaccine is contingent on its ability to induce both systemic and mucosal antibody responses against a wide range of norovirus genotypes. Norovirus virus-like particles (VLPs) are known to elicit systemic and mucosal immune responses when delivered intranasally. Incorporation of these VLPs into an intranasal powder vaccine offers the advantage of simplicity and induction of neutralizing systemic and mucosal antibodies. Nasal immunization, which provides the advantage of ease of administration and a mucosal delivery mechanism, faces the real issue of limited nasal residence time due to mucociliary clearance. Herein, we describe a novel dry powder (GelVac™) formulation of GI or GII.4 norovirus VLPs, two dominant circulating genotypes, to identify the optimal antigen dosages based on systemic and mucosal immune responses in guinea pigs. Systemic and mucosal immunogenicity of each of the VLPs was observed in a dose-dependent manner. In addition, a boosting effect was observed after the second dosing of each VLP antigen. With the GelVac™ formulation, a total antigen dose of ≥ 15 µg was determined to be the maximally immunogenic dose for both GI and GII.4 norovirus VLPs based on evaluation for 56 days. Taken together, these results indicate that norovirus VLPs could be used as potential vaccine candidates without using an immunostimulatory adjuvant and provide a basis for the development of a GelVac™ bivalent GI/GII.4 norovirus VLP vaccine.


Asunto(s)
Inmunidad Mucosa , Norovirus , Polvos , Vacunación/métodos , Vacunas Virales/administración & dosificación , Vacunas Virales/química , Administración Intranasal , Animales , Anticuerpos Antivirales/sangre , Relación Dosis-Respuesta Inmunológica , Femenino , Cobayas , Inmunoglobulina G/sangre , Pruebas de Neutralización , Distribución Aleatoria , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...