Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 7(4)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34842694

RESUMEN

Over the past several decades, the development of engineered small particles as targeted and drug delivery systems (TDDS) has received great attention thanks to the possibility to overcome the limitations of classical cancer chemotherapy, including targeting incapability, nonspecific action and, consequently, systemic toxicity. Thus, this research aims at using a novel design of Poly(N-isopropylacrylamide) p(NIPAM)-based microgels to specifically target cancer cells and avoid the healthy ones, which is expected to decrease or eliminate the side effects of chemotherapeutic drugs. Smart NIPAM-based microgels were functionalized with acrylic acid and coupled to folic acid (FA), targeting the folate receptors overexpressed by cancer cells and to the chemotherapeutic drug doxorubicin (Dox). The successful conjugation of FA and Dox was demonstrated by dynamic light scattering (DLS), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), UV-VIS analysis, and differential scanning calorimetry (DSC). Furthermore, viability assay performed on cancer and healthy breast cells, suggested the microgels' biocompatibility and the cytotoxic effect of the conjugated drug. On the other hand, the specific tumor targeting of synthetized microgels was demonstrated by a co-cultured (healthy and cancer cells) assay monitored using confocal microscopy and flow cytometry. Results suggest successful targeting of cancer cells and drug release. These data support the use of pNIPAM-based microgels as good candidates as TDDS.

2.
Biochim Biophys Acta Mol Cell Res ; 1868(6): 118995, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33667527

RESUMEN

Locally advanced breast cancer (LABC) is an aggressive disease characterized by late clinical presentation, large tumor size, treatment resistance and low survival rate. Expression of EGFR/HER2 and activation of intracellular tyrosine kinase domains in LABC are associated with poor prognosis. Thus, target therapies such as the anti-receptor tyrosine kinases lapatinib drug have been more developed in the past decade. The response to lapatinib involves the inhibition of RTKs and subsequently signaling molecules such as Src/STAT3/Erk1/2 known also to be activated by the cytokines in the tumor microenvironment (TME). The aim of the present study is to identify the major cytokine that might contribute to lapatinib resistance in EGFR+/HER2+ LABC patients. Indeed, tumor associated macrophages (TAMs) are the main source of cytokines in the TME. Herein, we isolated TAMs from LABC during modified radical mastectomy (MRM). Cytokine profile of TAMs revealed that IL-8 is the most prominent highly secreted cytokine by TAMs of LABC patients. Using in-vitro cell culture model we showed that recombinant IL-8 (50 and 100 ng/mL) at different time intervals interfere with lapatinib action via activation of Src/EGFR and signaling molecules known to be inhibited during treatment. We proposed that to improve LABC patients' response to lapatinib treatment it is preferred to use combined therapy that neutralize or block the action of IL-8.


Asunto(s)
Neoplasias de la Mama/cirugía , Resistencia a Antineoplásicos , Interleucina-8/metabolismo , Macrófagos Asociados a Tumores/inmunología , Adulto , Anciano , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Femenino , Humanos , Lapatinib/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mastectomía , Persona de Mediana Edad , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos
3.
Nanomaterials (Basel) ; 10(2)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033111

RESUMEN

Crude oil pollution of water bodies is a worldwide problem that affects water ecosystems and is detrimental to human health and the diversity of living organisms. The objective of this study was to assess the ability of water hyacinth (Eichhornia crassipes (Mart.) Solms) combined with the presence of magnetic nanoparticles capped with natural products based on Myrrh to treat fresh water contaminated by crude petroleum oil. Magnetic nanoparticles based on magnetite capped with Myrrh extracts were prepared, characterized, and used to adsorb heavy components of the crude oil. The hydrophobic hexane and ether Myrrh extracts were isolated and used as capping for magnetite nanoparticles. The chemical structures, morphologies, particle sizes, and magnetic characteristics of the magnetic nanoparticles were investigated. The adsorption efficiencies of the magnetic nanoparticles show a greater efficiency to adsorb more than 95% of the heavy crude oil components. Offsets of Water hyacinth were raised in bowls containing Nile River fresh water under open greenhouse conditions, and subjected to varying crude oil contamination treatments of 0.5, 1, 2, 3, and 5 mL/L for one month. Plants were harvested and separated into shoots and roots, oven dried at 65 °C, and grounded into powder for further analysis of sulphur and total aromatic and saturated hydrocarbons, as well as individual aromatic constituents. The pigments of chlorophylls and carotenoids were measured spectrophotometrically in fresh plant leaves. The results indicated that the bioaccumulation of sulphur in plant tissues increased with the increased level of oil contamination. Water analysis showed significant reduction in polyaromatic hydrocarbons. The increase of crude oil contamination resulted in a decrease of chlorophylls and carotenoid content of the plant tissues. The results indicate that the water hyacinth can be used for remediation of water slightly polluted by crude petroleum oil. The presence of magnetite nanoparticles capped with Myrrh resources improved the remediation of water highly polluted by petroleum crude oil.

4.
Arch Pharm Res ; 2014 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-25322968

RESUMEN

L-Arginase, hydrolyzing L-arginine to L-ornithine and urea, is a powerful anticancer, L-arginine-depleting agent, against argininosuccinate synthase expressing tumors. Otherwise, the higher antigenicity and lower thermal stability of this enzyme was the main biochemical hurdles. Since, the intrinsic thermal stability of enzymes follow the physiological temperature of their producer, thus, characterization of L-arginase from thermotolerant Penicillium chrysogenum was the objective of this study. L-Arginase (Arg) was purified to its homogeneity from P. chrysogenum by 10.1-fold, with 37.0 kDa under denaturing PAGE, optimum reaction at 50 °C, pH stability (6.8-7.9), with highest molar ratio of constitutional arginine, glutamic acid, lysine and aspartic acid. The purified enzyme was PEGylated and immobilized on chitosan, with 41.9 and 22.1 % yield of immobilization. At 40 °C, the T1/2 value of free-Arg, PEG-Arg and Chit-Arg was 10.4, 15.6, 20.5 h, respectively. The free-Arg and Chit-Arg have a higher affinity to L-arginine (K m 4.8 mM), while, PEG-Arg affinity was decreased by about 3 fold (K m 15.2 mM). The inhibitory constants to the free and PEG-Arg were relatively similar towards HA and PPG. The IC50 for the free enzyme against HEPG-2 and A549 tumor cells was 0.136 and 0.165 U/ml, comparing to 0.232 and 0.496 U/ml for PEG-Arg, respectively. The in vivo T1/2 to the free Arg and PEG-Arg was 16.4 and 20.4 h, respectively as holo-enzyme. The residual L-arginine level upon using free Arg was 156.9 and 144.5 µM, after 6 and 8 h, respectively, regarding to initials at 253.6 µM, while for Peg-Arg the level of L-arginine was nil till 7 h of initial dosing. The titer of IgG was induced by 10-15 % in response to free-Arg after 28 days comparing to IgG titer for PEG-Arg.

5.
GM Crops Food ; 4(1): 36-49, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23333856

RESUMEN

Cotton is the world's leading natural fiber and second most important oilseed crop and has been a focus of genetic, systematic and breeding research. The genetic and physiological bases of some important agronomic traits in cotton were investigated by QTL mapping through constructing of genetic map with chromosomal assignment. A segregating F2 population derived from an interspecific cross (G. barbadense x G. hirsutum) between two genotypes, cvs. "Giza 83" and "Deltapine" was used in this study. Different molecular markers including SSR, EST, EST-SSR, AFLP and RAPD were employed to identify markers that reveal differences between the parents. In total 42 new markers were merged with 140 previously mapped markers to produce a new map with 182 loci covering a total length of 2370.5 cM. Among these new markers, some of them were used to assign chromosomes to the produced 26 linkage groups. The LG2, LG3, LG11 and LG26 were assigned to chromosomes 1, 6, 5 and 20 respectively. Single point analysis was used to identify genomic regions controlling traits for plant height, number of nodes at flowering time, bolling date, days to flowering and number of bolls. In total 40 significant QTL were identified for the five traits on 11 linkage groups (1, 2, 3, 4, 5, 10, 11, 12, 18, 19 and 23). This work represents an improvement of the previously constructed genetic map in addition to chromosomal assignment and detection of new significant QTL for the five traits in Egyptian cotton. The Significant QTLs detected in this study can be employed in marker assisted selection for molecular breeding programs aiming at developing cotton cultivars with improved agronomic traits.


Asunto(s)
Agricultura , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Ligamiento Genético , Gossypium/genética , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Segregación Cromosómica/genética , Cruzamientos Genéticos , Etiquetas de Secuencia Expresada , Gossypium/anatomía & histología , Repeticiones de Microsatélite/genética , Polimorfismo Genético , Técnica del ADN Polimorfo Amplificado Aleatorio
6.
Theor Appl Genet ; 109(7): 1417-25, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15517148

RESUMEN

Drought limits cereal yields in several regions of the world and plant water status plays an important role in tolerance to drought. To investigate and understand the genetic and physiological basis of drought tolerance in barley, differentially expressed sequence tags (dESTs) and candidate genes for the drought response were mapped in a population of 167 F8 recombinant inbred lines derived from a cross between "Tadmor" (drought tolerant) and "Er/Apm" (adapted only to specific dry environments). One hundred sequenced probes from two cDNA libraries previously constructed from drought-stressed barley (Hordeum vulgare L., var. Tokak) plants and 12 candidate genes were surveyed for polymorphism, and 33 loci were added to a previously published map. Composite interval mapping was used to identify quantitative trait loci (QTL) associated with drought tolerance including leaf relative water content, leaf osmotic potential, osmotic potential at full turgor, water-soluble carbohydrate concentration, osmotic adjustment, and carbon isotope discrimination. A total of 68 QTLs with a limit of detection score > or =2.5 were detected for the traits evaluated under two water treatments and the two traits calculated from both treatments. The number of QTLs identified for each trait varied from one to 12, indicating that the genome contains multiple genes affecting different traits. Two candidate genes and ten differentially expressed sequences were associated with QTLs for drought tolerance traits.


Asunto(s)
Desastres , Etiquetas de Secuencia Expresada , Hordeum/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Clima , Genes de Plantas , Marcadores Genéticos , Endogamia , Hibridación de Ácido Nucleico , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Mapeo Restrictivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...