Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2507: 41-58, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35773576

RESUMEN

Overexpression of properly folded membrane proteins is a mandatory step for their functional and structural characterization. One of the most used expression systems for the production of proteins is Escherichia coli. Many advantageous strains combined with T7 expression systems have been developed over the years. Recently, we showed that the choice of the strain is critical for the functionality of membrane proteins, even when the proteins are successfully incorporated in the membrane (Mathieu et al. Sci Rep. 2019; 9(1):2654). Notably, the amount and/or activity of the T7-RNA polymerase, which drives the transcription of the genes of interest, may indirectly affect the folding and functionality of overexpressed membrane proteins. Moreover, we reported a general trend in which mild detergents mainly extract the population of active membrane proteins, whereas a harsher detergent like Fos-choline 12 could solubilize them irrespectively of their functionality. Based on these observations, we provide some guidelines to optimize the quality of membrane proteins overexpressed in E. coli.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Detergentes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo
2.
PLoS Pathog ; 18(4): e1010458, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35395062

RESUMEN

Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path.


Asunto(s)
Péptidos Antimicrobianos , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Streptococcus pneumoniae , Péptidos Antimicrobianos/farmacología , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Péptidos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...