Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 103(13): 6150-6166, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37127924

RESUMEN

Butylated hydroxyanisole (BHA) is mainly used as a food additive due to its antioxidant properties, which prevent or delay oxidation reactions and extend the storage life of products. The widespread use of BHA has led to its extensive presence in various environmental matrices and human tissues. Food intake is the main route of human exposure to BHA. Under different conditions, BHA can produce different metabolites, with tert-butyl hydroquinone (TBHQ) being one of the major products. Several studies have shown that BHA could cause thyroid system damage, metabolic and growth disorders, neurotoxicity, and carcinogenesis. Mechanisms such as endocrine disruption, genotoxicity, disturbances of energy metabolism, reactive oxygen species (ROS) production, signaling pathways, and imbalances in calcium homeostasis appear to be associated with the toxic effects of BHA. Avoiding the toxic effects of BHA to the maximum extent possible is a top priority. Finding safe, non-toxic and environmentally friendly alternatives to BHA should be the focus of subsequent research. In all, this review summarized the current situation related to BHA and might make recommendations for future research directions. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Hidroxianisol Butilado , Humanos , Hidroxianisol Butilado/toxicidad , Antioxidantes/metabolismo , Oxidación-Reducción , Aditivos Alimentarios/toxicidad , Especies Reactivas de Oxígeno
2.
Br J Cancer ; 129(1): 8-23, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36997662

RESUMEN

Lung cancer, a highly malignant disease, greatly affects patients' quality of life. N6-methyladenosine (m6A) is one of the most common posttranscriptional modifications of various RNAs, including mRNAs and ncRNAs. Emerging studies have demonstrated that m6A participates in normal physiological processes and that its dysregulation is involved in many diseases, especially pulmonary tumorigenesis and progression. Among these, regulators including m6A writers, readers and erasers mediate m6A modification of lung cancer-related molecular RNAs to regulate their expression. Furthermore, the imbalance of this regulatory effect adversely affects signalling pathways related to lung cancer cell proliferation, invasion, metastasis and other biological behaviours. Based on the close association between m6A and lung cancer, various prognostic risk models have been established and novel drugs have been developed. Overall, this review comprehensively elaborates the mechanism of m6A regulation in the development of lung cancer, suggesting its potential for clinical application in the therapy and prognostic assessment of lung cancer.


Asunto(s)
Neoplasias Pulmonares , Calidad de Vida , Humanos , Metilación , Pronóstico , Neoplasias Pulmonares/genética , ARN
3.
Acta Pharmacol Sin ; 44(8): 1564-1575, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36899113

RESUMEN

Growth hormone secretagogue receptor 1a (GHS-R1a) is an important G protein-coupled receptor (GPCR) that regulates a variety of functions by binding to ghrelin. It has been shown that the dimerization of GHS-R1a with other receptors also affects ingestion, energy metabolism, learning and memory. Dopamine type 2 receptor (D2R) is a GPCR mainly distributed in the ventral tegmental area (VTA), substantia nigra (SN), striatum and other brain regions. In this study we investigated the existence and function of GHS-R1a/D2R heterodimers in nigral dopaminergic neurons in Parkinson's disease (PD) models in vitro and in vivo. By conducting immunofluorescence staining, FRET and BRET analyses, we confirmed that GHS-R1a and D2R could form heterodimers in PC-12 cells and in the nigral dopaminergic neurons of wild-type mice. This process was inhibited by MPP+ or MPTP treatment. Application of QNP (10 µM) alone significantly increased the viability of MPP+-treated PC-12 cells, and administration of quinpirole (QNP, 1 mg/kg, i.p. once before and twice after MPTP injection) significantly alleviated motor deficits in MPTP-induced PD mice model; the beneficial effects of QNP were abolished by GHS-R1a knockdown. We revealed that the GHS-R1a/D2R heterodimers could increase the protein levels of tyrosine hydroxylase in the SN of MPTP-induced PD mice model through the cAMP response element binding protein (CREB) signaling pathway, ultimately promoting dopamine synthesis and release. These results demonstrate a protective role for GHS-R1a/D2R heterodimers in dopaminergic neurons, providing evidence for the involvement of GHS-R1a in PD pathogenesis independent of ghrelin.


Asunto(s)
Enfermedad de Parkinson , Receptores de Ghrelina , Animales , Ratones , Receptores de Ghrelina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ghrelina/farmacología , Dopamina/metabolismo , Quinpirol/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA