Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37111567

RESUMEN

The efficiency of photodynamic therapy is often limited by the scarcity of oxygen at the target site. To address this problem, this work proposes the development of a new nanosystem for antimicrobial photodynamic therapy applications (aPDT) where the natural-origin photosensitizer curcumin (CUR) is immersed in an oxygen-rich environment. Inspired by the perfluorocarbon-based photosensitizer/O2 nanocarriers reported in the literature, we developed a new type of silica nanocapsule containing curcumin dissolved in three hydrophobic ionic liquids (ILs) with high oxygen dissolving capacities. The nanocapsules (CUR-IL@ncSi), prepared by an original oil-in-water microemulsion/sol-gel method, had a high IL content and exhibited clear capacities to dissolve and release significant amounts of oxygen, as demonstrated by deoxygenation/oxygenation studies. The ability of CUR-IL solutions and of CUR-IL@ncSi to generate singlet oxygen (1O2) upon irradiation was confirmed by the detection of 1O2 phosphorescence at 1275 nm. Furthermore, the enhanced capacities of oxygenated CUR-IL@ncSi suspensions to generate 1O2 upon irradiation with blue light were confirmed by an indirect spectrophotometric method. Finally, preliminary microbiological tests using CUR-IL@ncSi incorporated into gelatin films showed the occurrence of antimicrobial effects due to photodynamic inactivation, with their relative efficiencies depending on the specific IL in which curcumin was dissolved. Considering these results, CUR-IL@ncSi has the potential to be used in the future to develop biomedical products with enhanced oxygenation and aPDT capacities.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35682153

RESUMEN

The need to secure public health and mitigate the environmental impact associated with the massified use of respiratory protective devices (RPD) has been raising awareness for the safe reuse of decontaminated masks by individuals and organizations. Among the decontamination treatments proposed, in this work, three methods with the potential to be adopted by households and organizations of different sizes were analysed: contact with nebulized hydrogen peroxide (H2O2); immersion in commercial bleach (NaClO) (sodium hypochlorite, 0.1% p/v); and contact with steam in microwave steam-sanitizing bags (steam bag). Their decontamination effectiveness was assessed using reference microorganisms following international standards (issued by ISO and FDA). Furthermore, the impact on filtration efficiency, air permeability and several physicochemical and structural characteristics of the masks, were evaluated for untreated masks and after 1, 5 and 10 cycles of treatment. Three types of RPD were analysed: surgical, KN95, and cloth masks. Results demonstrated that the H2O2 protocol sterilized KN95 and surgical masks (reduction of >6 log10 CFUs) and disinfected cloth masks (reduction of >3 log10 CFUs). The NaClO protocol sterilized surgical masks, and disinfected KN95 and cloth masks. Steam bags sterilized KN95 and disinfected surgical and cloth masks. No relevant impact was observed on filtration efficiency.


Asunto(s)
Descontaminación , Dispositivos de Protección Respiratoria , Descontaminación/métodos , Filtración , Humanos , Peróxido de Hidrógeno , Permeabilidad , Vapor
3.
Mater Sci Eng C Mater Biol Appl ; 121: 111798, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33579445

RESUMEN

In this work, electro-responsive chitosan/ionic liquid-based hydrogels were synthetized for the first time, envisaging the development of iontophoretic biomaterials for the controlled release/permeation of charged biomolecules. The main goal was to enhance and tune the physicochemical, mechanical, electro-responsive, and haemostatic properties of chitosan-based biomaterials to obtain multi-stimuli responsive (responsive to electrical current, ionic strength, and pH) and mechanically stable hydrogels. To accomplish this objective, polycationic semi-interpenetrating copolymer networks (semi-IPN) were prepared by combining chitosan (CS) and ionic liquid-based polymers and copolymers, namely poly(1-butyl-3-vinylimidazolium chloride) (poly(BVImCl)) and poly(2-hydroxymethyl methacrylate-co-1-butyl-3-vinylimidazolium chloride) (poly(HEMA-co-BVImCl)). Results show that prepared semi-IPNs presented high mechanical stability and were positively charged over a broad pH range, including basic pH. Semi-IPNs also presented faster permeation and release rates of lidocaine hydrochloride (LH), under external electrical stimulus (0.56 mA/cm2) in aqueous media at 32 °C. The kinetic release constants and the LH diffusion coefficients measured under electrical stimulus were ~1.5 and > 2.7 times higher for those measured for passive release. Finally, both semi-IPNs were non-haemolytic (haemolytic index ≤0.2%) and showed strong haemostatic activity (blood clotting index of ~12 ± 1%). Altogether, these results show that the prepared polycationic semi-IPN hydrogels presented advantageous mechanical, responsive and biological properties that enable them to be potentially employed for the design of new, safer, and advanced stimuli-responsive biomaterials for several biomedical applications such as haemostatic and wound healing dressings and iontophoretic patches.


Asunto(s)
Quitosano , Líquidos Iónicos , Vendajes , Materiales Biocompatibles/farmacología , Hidrogeles , Concentración de Iones de Hidrógeno , Polímeros
4.
Mater Sci Eng C Mater Biol Appl ; 93: 595-605, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30274091

RESUMEN

This study aimed to evaluate the effect of poly(dimethylsiloxane) on the mechanical properties of chitosan-alginate (CA) polyelectrolyte complexes (PECs) with potential application as wound dressing biomaterials. For that purpose, different amounts of poly(dimethylsiloxane) were incorporated during the formulation of the PECs. Results showed that the highest tensile strength was observed when using 0.1 g of poly(dimethylsiloxane) per gram of PEC (CAS10). This formulation was also non-hemolytic, capable of inducing thrombus formation to potentially reduce bleeding, and additionally presented high stability when exposed to physiological fluids and/or conditions simulating patient bathing. To improve its wound healing capacity, this formulation was loaded with thymol and beta-carotene (anesthetic, anti-inflammatory and antioxidant compounds) by the supercritical carbon dioxide impregnation/deposition (SSI/D) method at 250 bar and 45 °C for 14 h and at two depressurization rates (5 and 10 bar/min). The PECs were also loaded by conventional impregnation in solution for comparison purposes. Higher bioactive loadings, of 1.8 ±â€¯0.2 and 1.3 ±â€¯0.03 µg per milligram of PEC for thymol and beta-carotene, respectively, were observed when using SSI/D and a higher depressurization rate (10 bar/min). These values do not correspond to the maximum loaded amount of each bioactive, which were strongly retained in the PEC structure due to favorable bioactive-polymer interactions, originating matrices that should present a more sustained release during in vivo applications.


Asunto(s)
Vendajes , Dimetilpolisiloxanos/química , Ensayo de Materiales , Timol/química , beta Caroteno/química , Animales , Conejos
5.
Adv Drug Deliv Rev ; 131: 22-78, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-30026127

RESUMEN

Low drug bioavailability, which is mostly a result of poor aqueous drug solubilities and of inadequate drug dissolution rates, is one of the most significant challenges that pharmaceutical companies are currently facing, since this may limit the therapeutic efficacy of marketed drugs, or even result in the discard of potential highly effective drug candidates during developmental stages. Two of the main approaches that have been implemented in recent years to overcome poor drug solubility/dissolution issues have frequently involved drug particle size reduction (i.e., micronization/nanonization) and/or the modification of some of the physicochemical and structural properties of poorly water soluble drugs. A large number of particle engineering methodologies have been developed, tested, and applied in the synthesis and control of particle size/particle-size distributions, crystallinities, and polymorphic purities of drug micro- and nano-particles/crystals. In recent years pharmaceutical processing using supercritical fluids (SCF), in general, and supercritical carbon dioxide (scCO2), in particular, have attracted a great attention from the pharmaceutical industry. This is mostly due to the several well-known advantageous technical features of these processes, as well as to other increasingly important subjects for the pharmaceutical industry, namely their "green", sustainable, safe and "environmentally-friendly" intrinsic characteristics. In this work, it is presented a comprehensive state-of-the-art review on scCO2-based processes focused on the formation and on the control of the physicochemical, structural and morphological properties of amorphous/crystalline pure drug nanoparticles. It is presented and discussed the most relevant scCO2, scCO2-based fluids and drug physicochemical properties that are pertinent for the development of successful pharmaceutical products, namely those that are critical in the selection of an adequate scCO2-based method to produce pure drug nanoparticles/nanocrystals. scCO2-based nanoparticle formation methodologies are classified in three main families, and in terms of the most important role played by scCO2 in particle formation processes: as a solvent; as an antisolvent or a co-antisolvent; and as a "high mobility" additive (a solute, a co-solute, or a co-solvent). Specific particle formation methods belonging to each one of these families are presented, discussed and compared. Some selected amorphous/crystalline drug nanoparticles that were prepared by these methods are compiled and presented, namely those studied in the last 10-15 years. A special emphasis is given to the formation of drug cocrystals. It is also discussed the fundamental knowledge and the main mechanisms in which the scCO2-based particle formation methods rely on, as well as the current status and urgent needs in terms of reliable experimental data and of robust modeling approaches. Other addressed and discussed topics include the currently available and the most adequate physicochemical, morphological and biological characterization methods required for pure drug nanoparticles/nanocrystals, some of the current nanometrology and regulatory issues associated to the use of these methods, as well as some scale-up, post-processing and pharmaceutical regulatory subjects related to the industrial implementation of these scCO2-based processes. Finally, it is also discussed the current status of these techniques, as well as their future major perspectives and opportunities for industrial implementation in the upcoming years.


Asunto(s)
Dióxido de Carbono/química , Cromatografía con Fluido Supercrítico , Nanopartículas/química , Preparaciones Farmacéuticas/síntesis química , Humanos , Preparaciones Farmacéuticas/química
6.
Carbohydr Polym ; 102: 830-7, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24507353

RESUMEN

In this work, supercritical solvent impregnation (SSI) has been tested for the incorporation of natural compounds into biocomposite materials for food packaging. Cinnamaldehyde, with proved antimicrobial activity against fungi commonly found in bread products, was successfully impregnated on biocomposite cassava starch based materials using supercritical carbon dioxide as solvent. Different process experimental conditions were tested (pressure, impregnation time and depressurization rate) at a fixed temperature (35 °C) in order to study their influence on the amount of impregnated cinnamaldehyde as well as on the morphology of the films. Results showed that all conditions permitted to impregnate antimicrobial active amounts superior to those previously obtained using conventional incorporation methods. Moreover, a significant decrease of the equilibrium water vapor sorption capacity and water vapor permeability of the films was observed after SSI processing which is a clear advantage of the process, considering the envisaged applications.


Asunto(s)
Acroleína/análogos & derivados , Cromatografía con Fluido Supercrítico/métodos , Embalaje de Alimentos , Manihot/química , Almidón/química , Acroleína/química , Microscopía Electrónica de Rastreo , Permeabilidad , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
7.
Acta Biomater ; 10(2): 843-57, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24121197

RESUMEN

One important complication of diabetes mellitus is chronic, non-healing diabetic foot ulcers (DFUs). This study aims to develop and use dressings based on chitosan derivatives for the sustained delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. Three different derivatives, namely N-carboxymethyl chitosan, 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan, are presented as potential biomaterials for wound healing applications. Our results show that MPC has the best fluid handling capacity and delivery profile, also being non-toxic to Raw 264.7 and HaCaT cells. NT-loaded and non-loaded MPC dressings were applied to control/diabetic wounds to evaluate their in vitro/in vivo performance. The results show that the former induced more rapid healing (50% wound area reduction) in the early phases of wound healing in diabetic mice. A NT-loaded MPC foam also reduced expression of the inflammatory cytokine TNF-α (P<0.001) and decreased the amount of inflammatory infiltrate on day 3. On day 10 MMP-9 was reduced in diabetic skin (P<0.001), significantly increasing fibroblast migration and collagen (COL1A1, COL1A2 and COL3A1) expression and deposition. These results suggest that MPC-based dressings may work as an effective support for sustained NT release to reduce DFUs.


Asunto(s)
Vendajes , Quitosano/química , Pie Diabético/patología , Neurotensina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quitosano/análogos & derivados , Quitosano/síntesis química , Colágeno/genética , Colágeno/metabolismo , Citocinas/genética , Citocinas/metabolismo , Perfilación de la Expresión Génica , Glutatión/metabolismo , Humanos , Hidroxiprolina/metabolismo , Inflamación/patología , Cinética , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Pirrolidinonas/síntesis química , Pirrolidinonas/química , Piel/efectos de los fármacos , Piel/patología , Vapor
8.
Biochim Biophys Acta ; 1842(1): 32-43, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24161538

RESUMEN

Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (p<0.01) and IL-1ß (p<0.01) and decreased the inflammatory infiltrate at day 3 post-wounding (inflammatory phase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (p<0.05) which significantly increased fibroblast migration and collagen (collagen type I, alpha 2 (COL1A2) and collagen type III, alpha 1 (COL3A1)) expression and deposition. These results suggest that collagen-based dressings can be an effective support for NT release into diabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Vendajes , Diabetes Mellitus Experimental/metabolismo , Neurotensina/farmacología , Piel/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Movimiento Celular , Colágeno/química , Colágeno Tipo I/genética , Colágeno Tipo I/inmunología , Colágeno Tipo III/genética , Colágeno Tipo III/inmunología , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Expresión Génica/efectos de los fármacos , Humanos , Inflamación/inmunología , Inflamación/patología , Inflamación/prevención & control , Queratinocitos/efectos de los fármacos , Queratinocitos/inmunología , Queratinocitos/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/inmunología , Ratones , Ratones Endogámicos C57BL , Piel/inmunología , Piel/lesiones , Piel/metabolismo , Estreptozocina , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
9.
Acta Biomater ; 9(7): 7093-114, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23542233

RESUMEN

Diabetic foot ulcers (DFUs) are a chronic, non-healing complication of diabetes that lead to high hospital costs and, in extreme cases, to amputation. Diabetic neuropathy, peripheral vascular disease, abnormal cellular and cytokine/chemokine activity are among the main factors that hinder diabetic wound repair. DFUs represent a current and important challenge in the development of novel and efficient wound dressings. In general, an ideal wound dressing should provide a moist wound environment, offer protection from secondary infections, remove wound exudate and promote tissue regeneration. However, no existing dressing fulfills all the requirements associated with DFU treatment and the choice of the correct dressing depends on the wound type and stage, injury extension, patient condition and the tissues involved. Currently, there are different types of commercially available wound dressings that can be used for DFU treatment which differ on their application modes, materials, shape and on the methods employed for production. Dressing materials can include natural, modified and synthetic polymers, as well as their mixtures or combinations, processed in the form of films, foams, hydrocolloids and hydrogels. Moreover, wound dressings may be employed as medicated systems, through the delivery of healing enhancers and therapeutic substances (drugs, growth factors, peptides, stem cells and/or other bioactive substances). This work reviews the state of the art and the most recent advances in the development of wound dressings for DFU treatment. Special emphasis is given to systems employing new polymeric biomaterials, and to the latest and innovative therapeutic strategies and delivery approaches.


Asunto(s)
Vendajes/tendencias , Preparaciones de Acción Retardada/administración & dosificación , Pie Diabético/enfermería , Pie Diabético/rehabilitación , Cicatrización de Heridas/efectos de los fármacos , Administración Tópica , Diseño de Equipo , Humanos
10.
Acta Biomater ; 8(3): 1366-79, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22085860

RESUMEN

This work reports and discusses the influence of four phosphonium-based ionic liquids (PhILs), namely trihexyl(tetradecyl) phosphonium dicyanamide, [P(6,6,6,14)][dca]; trihexyl(tetradecyl) phosphonium bis(trifluoromethylsulfonyl)imide, [P(6,6,6,14)][Tf(2)N]; tetrabutyl phosphonium bromide, [P(4,4,4,4)][Br]; and tetrabutyl phosphonium chloride, [P(4,4,4,4)][Cl], on some of the chemical, physical and biological properties of a biomedical-grade suspension of poly(vinyl chloride) (PVC). The main goal of this work was to evaluate the capacity of these PhILs to modify some of the properties of neat PVC, in particular those that may allow their use as potential alternatives to traditional phthalate-based plasticizers in PVC biomedical applications. PVC films having different PhIL compositions (0, 5, 10 and 20 wt.%) were prepared (by solvent film casting) and characterised by Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, dynamical mechanical thermal analysis, scanning electron microscopy/energy-dispersive X-ray/electron probe microanalysis, X-ray diffraction, transmittance, permeability towards oxygen and carbon dioxide, thermal degradation, contact angle measurement, water and vapour uptake, leachability and biocompatibility (haemolytic potential, thrombogenicity and cytotoxicity). A conventional organic plasticizer (di-isononyl phthalate) was used for comparison purposes. The results obtained showed that it was possible to change the neat PVC hydrophobicity, and consequently its water uptake capacity and plasticizer leachability, just by changing the PhIL employed and its composition. It was also possible to significantly change the thermal and mechanical properties of PVC films by choosing appropriate PhIL cation/anion combinations. However, a specific PhIL may not always be capable of simultaneously keeping and/or improving both physical properties. In addition, ionic halide salts were found to promote PVC dehydrochlorination. Finally, none of the prepared materials presented toxicity against Caco-2 cells, though pure [P(6,6,6,14)][dca] decreased HepG2 cells viability. Moreover, PVC films with [P(6,6,6,14)][dca] and [P(4,4,4,4)][Cl] were found to be haemolytic and thus these PhILs must be avoided as PVC modifiers if biomedical applications are envisaged. In conclusion, from all the PhILs tested, [P(6,6,6,14)][Tf(2)N] showed the most promising results regarding blood compatibility, leaching and permeability to gases of PVC films. The results presented are a strong indicator that adequate PhILs may be successfully employed as PVC multi-functional plasticizers for a wide range of potential applications, including those in the biomedical field.


Asunto(s)
Ensayo de Materiales , Membranas Artificiales , Compuestos Organofosforados/química , Cloruro de Polivinilo/química , Células CACO-2 , Supervivencia Celular , Células Hep G2 , Humanos
12.
Anal Bioanal Chem ; 395(4): 1159-66, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19701801

RESUMEN

The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO(3)(-)), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of approximately 25% and correlation coefficients of approximately 0.82 for COD and TSS and 0.87 for N-NO(3)(-) . The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification.


Asunto(s)
Reactores Biológicos , Contaminantes Químicos del Agua/análisis , Fibras Ópticas , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja Corta , Factores de Tiempo
13.
J Colloid Interface Sci ; 286(1): 224-32, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15848420

RESUMEN

The aging mechanisms of perfluorocarbon emulsions were investigated using image analysis. Oil-in-water emulsions of two perfluorocarbons, n-perfluorohexane and perfluorodecalin, were prepared with three emulsifiers, Lecithin, Span 20, and Pluronic F-68. The effect of the temperature and the replacement of water by an aqueous phase consisting of a microbial culture medium were also studied. The emulsions were prepared by sonication and their stability was followed through analysis of the evolution of mean droplet size. The results indicate that the stability of perfluorocarbon in water emulsions depends on all the parameters investigated and that two aging mechanisms, coalescence and molecular diffusion, may take place. Analysis of the evolution of the mean droplet size during long time periods indicate that coalescence is more common than previously reported for these systems and seems to be favored by a temperature increase.


Asunto(s)
Emulsionantes/química , Fluorocarburos/química , Emulsiones , Transición de Fase , Propiedades de Superficie , Temperatura , Factores de Tiempo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...